• Title/Summary/Keyword: Ballistic

Search Result 451, Processing Time 0.028 seconds

A Study on Radar Received Power based on Target Observing Position (표적 관측 위치에 따른 레이더 수신 전력에 관한 연구)

  • Park, Tae-Yong;Lee, Yura
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.12
    • /
    • pp.3063-3068
    • /
    • 2014
  • Since the RCS(Radar Cross Section) of target is important factor to determine radar performance, it is important to locate radar where large RCS is observed. However, the distance between the target and the radar is an important factor of the received power, as well as RCS. In this paper, it is calculated that received power from ballistic missile to radar based on different observed position and it is studied that to place radar for high detection efficiency.

Design of a Coordinate-Transformation Extended Robust Kalman Filter for Incoming Ballistic Missile Tracking Systems (접근 탄도미사일 추적시스템을 위한 좌표변환 확장강인칼만필터 설계)

  • Shin Jong-Gu;Lee Tae Hoon;Yoon Tae-Sung;Choi Yoon-Ho;Park Jin Bae
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.52 no.1
    • /
    • pp.22-30
    • /
    • 2003
  • A Coordinate-Transformation Extended Robust Kalman Filter (CERKF) designed in the Krein space is proposed, and then applied to a nonlinear incoming ballistic missile tracking system with parameter uncertainties. First, the Extended Robust Kalman filter (ERKF) is proposed to handle the nonlinearity of measurement equation which occurs whenever the polar coordinate system is transformed into the Cartesian coordinate system. Moreover, linearization error inevitably occurs and deteriorates the tracking performance, which is considerably reduced by the proposed CERKF. Through the simulation results, we show that the proposed CERKF, which uses the measurement coordinate system, has less RMS error than the previous ERKF which is designed in the Krein space using the Cartesian system. We also verify that the robustness and the stability of the proposed filter are guaranteed in two radars: the phased way radar and the scanning radar

Internal Ballistic Analysis of Solid Rocket Motors with Erosive Burning (침식연소를 고려한 고체로켓 추진기관 내탄도 해석기법 연구)

  • Cho, Min-Gyung;Kwon, Tae-Hoon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.213-216
    • /
    • 2010
  • A typical unsteady internal ballistic analysis model was proposed to take account of the erosive burning for a solid rocket motor. The variance of local velocity and pressure along grain surface are analyzed by using the continuity and momentum equation. The model introduced in this study showed good agreements with the results of previous internal ballistics program. It was investigated that the change of combustion pressure, gas velocity and regrestion rate along the grain axis.

  • PDF

A study on Applicability in Super Cavitation with SLBM of North Korea

  • Oh, Kyunngwon;Lee, Kyounghaing
    • International Journal of Aerospace System Engineering
    • /
    • v.3 no.2
    • /
    • pp.9-13
    • /
    • 2016
  • This study is about technical analysis in launching SLBM of North Korea. We expect that North Korea develop ICBM and SLBM by improving the technique called R-27. Also it is expected that they attempt to achievement in covertness and ambush by completing technique of cold launching. Recently, SLBM of North Korea rised 40 ~ 50 m on surface after launching in an underwater when they showed the scene of firing SLBM. We expect that they actively use not general technique but super cavitation technique. Also, they might improve the launching technique by doing SLBM launching test. This type is about that whole rocket is separated two parts and ignited with high velocity and we might think that 1st rocket is used in solid propellant to maneuver in high velocity in an underwater. After then, they might use liquid propellant for the long-range ballistic missile.

The Research of Naval Tracking Filter using IMM3 for Naval Gun Ballistic Computer Unit (IMM3를 이용한 사격제원계산장치 대함필터 연구)

  • Lee, Young-Ju
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.8 no.3 s.22
    • /
    • pp.24-32
    • /
    • 2005
  • This paper describes the tracking filter performance for Naval Gun Ballistic Computation Unit(BCU). BCU needs tracing filter for gun firing. Using data of tracking sensor, BCU calculates the future position of Target and Gun order in the time of flight. In this paper, tracing filter is designed with interacting multiple model(IMM). The tracking algorithm based on the IMM requirers a considerable number of sub-model for the various maneuvering target in order to have a good performance. But, in the case of ship target, the maneuvering is restricted compared with the air target. Considering the maneuvering properties and adjusting the mode transition probabilities and the process noise of sub-model, We designed the IMM3 algorithm for Naval tracking filter with three sub-model.

Recursive Bayesian Filter based Strike Velocity Estimation for Small Caliber Projectile (재귀적 베이시안 필터를 적용한 소화기탄의 충돌속도 추정 연구)

  • Kim, Jong-Hwan;Jo, Seungsik
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.19 no.2
    • /
    • pp.177-184
    • /
    • 2016
  • This paper presents a strike velocity estimation using the recursive Bayesian filter that operates both correction and prediction models to probabilistically remove noises of sensors and accurately estimate the strike velocity during the real-time experiments. Four different types of bullets such as 5.56 mm M193, 7.62 mm M80, 5.45 mm 7N10 and 7.62 mm MSC were used to validate the proposed method. Compared to the existing method, the proposed method statistically results in higher stability of the strike velocity estimation as well as its reliability for the ballistic limit velocity computation.

Challenges of Republic of Korea Navy : How to Cope with Old and New Threats from North Korea and Others. (북한 및 지역 해양안보 위협 극복과 대한민국 해군발전)

  • Bai, Hyung-Soo
    • Strategy21
    • /
    • s.37
    • /
    • pp.32-64
    • /
    • 2015
  • This paper examines the types and trends of North Korea's military provocations and regional maritime threats against South Korea, and is focusing on the Republic of Korea's naval development and modernizations by the Republic of Korea Navy (ROKN) on future actions, what directions of the ROKN has taken thus far in response, as well as an examination of how the ROKN might respond to vulnerabilities identified throughout modern history. Importantly, this paper does not consider the domestic, bilateral, multilateral, regional and global political dimensions of the situation on the Korean Peninsula; nor does it consider the North Korea's transitional power politics, but including North Korea's nuclear program and submarine-launched ballistic missile developments, as a caveat, this paper is based on open sources in Korean and English language, and thus information concerning provocations is indicative only.

Unsteady Internal Ballistic Analysis of Solid Rocket Motors with Erosive Burning (침식연소를 고려한 고체로켓의 비정상 내타도 해석 기법)

  • Cho, Min-Gyung;Heo, Jun-Young;Sung, Hong-Gye
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.221-226
    • /
    • 2008
  • A typical unsteady internal ballistic analysis model was proposed to take account the erosive burning with the variance of local velocity and pressure along grain surface to the axis of a solid rocket combustor. The model introduced in this study showed good agreements with the results of previous research. It was investigated that the combustion pressure, grain length, initial temperature, and vaporization temperature of propellant affect on the erosive burning.

  • PDF

Unsteady Internal Ballistic Analysis for Solid Rocket Motors with Erosive Burning (침식연소를 고려한 고체로켓의 비정상 내탄도 해석 기법)

  • Cho, Min-Gyung;Heo, Jun-Young;Sung, Hong-Gye
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.13 no.2
    • /
    • pp.17-25
    • /
    • 2009
  • A typical unsteady internal ballistic analysis model was proposed to take account of the erosive burning with the variance of local velocity and pressure along the grain surface of a solid rocket combustor. To validate the model of concern in the study, both cases of non-erosive and erosive burning were compared with the previous researches with marginal accuracy. It was quantitatively investigated that the combustion pressure, grain length, initial temperature, and vaporization temperature of propellant affect the erosive burning characteristics.