• Title/Summary/Keyword: Ball-based

Search Result 768, Processing Time 0.023 seconds

The Design of a Robust Linear Time-invariant Feedback Compensator Guaranteeing Uniform Ultimate Boundedness for Uncertain Multivariable Systems (Uniform ultimate boundedness를 보장하는 선형 시블변 되먹임 보상기 설계)

  • Choi, Han-Ho;Yoo, Dong-Sang;Chung, Myung-Jin
    • Proceedings of the KIEE Conference
    • /
    • 1991.07a
    • /
    • pp.678-681
    • /
    • 1991
  • In this paper, we propose a robust linear time-invariant feedback compensator design methodology for multivariable system which have both matched and mismatched uncertainties. In order to attack the problem of designing robust compensators guaranteeing uniform ultimate boundedness of every closed-loop system response within an arbitrarily small ball centered at the zero state based solely on the knowledge of the upper norm-bounds of uncertainties, we use an approach based upon the comparison theorem which is an effective approach in studying augmented feedback control systems with both mismatched and matched uncertainties. Through the approach, we draw some sufficient conditions for robust stability, and we give a simple example.

  • PDF

Performance Improvement Using an Automation System for Segmentation of Multiple Parametric Features Based on Human Footprint

  • Kumar, V.D. Ambeth;Malathi, S.;Kumar, V.D. Ashok;Kannan, P.
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.4
    • /
    • pp.1815-1821
    • /
    • 2015
  • Rapid increase in population growth has made the mankind to delve in appropriate identification of individuals through biometrics. Foot Print Recognition System is a new challenging area involved in the Personal recognition that is easy to capture and distinctive. Foot Print has its own dimensions, different in many ways and can be distinguished from one another. The main objective is to provide a novel efficient automated system Segmentation using Foot Print based on structural relations among the features in order to overcome the existing manual method. This system comprises of various statistical computations of various foot print parameters for identifying the factors like Instep-Foot Index, Ball-Foot Index, Heel- Index, Toe- Index etc. The input is naked footprint and the output result to an efficient segmentation system thereby leading to time complexity.

Development of a Tool Life Prediction Program for Increasing Reliability of Cutting Tools (공구의 신뢰성 향상을 위한 수명 예측 프로그램 개발)

  • Kim Bong-Suk;Kang Tae-Han;Kang Jae-Hun;Song Jun-Yeob;Lee Soo-Hun
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.14 no.3
    • /
    • pp.1-7
    • /
    • 2005
  • The prediction for tool life is one of the most important factors for increasing reliability, stability, and productivity of manufacturing system. This paper deals with a tool life prediction method in view of reliability assessment for cutting tools. In this study, flank wear was focused among multi-factors deciding the tool wear state. First, tool life was predicted by correlation between flank wear and cutting time, based on the extended Taylor tool life equation of turning, including parameters of cutting speed, feed rate, and cutting depth. Second, each of cutting conditions of end-milling was equivalently converted to apply ball end-mill data to the extended Taylor equation. The web-based prediction program for tool life was developed as one of reliability assessment programs for machine tools.

Development of Humanoid Joint Module for Safe Human-Robot Interaction (인간과의 안전한 상호 작용을 고려한 휴머노이드 조인트 모듈 개발)

  • Oh, Yeon Taek
    • The Journal of Korea Robotics Society
    • /
    • v.9 no.4
    • /
    • pp.264-271
    • /
    • 2014
  • In this study, we have developed the humanoid joint modules which provide a variety of service while living with people in the future home life. The most important requirement is ensuring the safety for humans of the robot system for collaboration with people and providing physical service in dynamic changing environment. Therefore we should construct the mechanism and control system that each joint of the robot should response sensitively and rapidly to fulfill that. In this study, we have analyzed the characteristic of the joint which based on the target constituting the humanoid motion, developed the optimal actuator system which can be controlled based on each joint characteristic, and developed the control system which can control an multi-joint system at a high speed. In particular, in the design of the joint, we have defined back-drivability at the safety perspective and developed an actuator unit to maximize. Therefore we establish a foundation element technology for future commercialization of intelligent service robots.

Development of a Climbing Robot for Inspection of Bridge Cable (교량 케이블 점검용 이동 로봇 개발)

  • Kim, Ho-Moon;Cho, Kyeong-Ho;Jin, Young-Hoon;Liu, Fengyi;Choi, Hyouk-Ryeol
    • The Journal of Korea Robotics Society
    • /
    • v.7 no.2
    • /
    • pp.83-91
    • /
    • 2012
  • In this paper, we propose a cable climbing robot which can climb up and down the cables in the bridges. The robot mechanism consists of three parts: a wheel based driving mechanism, adhesion mechanism, and safe landing mechanism. The wheel based driving mechanism is driven by tooth clutches and motors. The adhesion mechanism plays the role of maintaining adhesion force by a combination of pantograph, ball screw, and springs even when the power is lost. The safe landing mechanism is developed for guaranteeing the safety of the robot during operations on cables. It can make the robot fall down with reduced speed by dissipating the gravitational forces. The robot mechanism is designed and manufactured for validating its effectiveness.

An Intelligent Simulation of a Phosphoric Acid Plant (인산제조공정의 모사연구)

  • 여영구
    • Journal of the Korea Society for Simulation
    • /
    • v.3 no.1
    • /
    • pp.167-178
    • /
    • 1994
  • For the identification of the optimal operating conditions of phosphoric acid plant, an intelligent simulation was performed based on the dissolution reaction of phosphate rock. A phosphoric acid plant consists of three main processes : ball-mill grinding process, rock reaction process and slurry filteration process. The grinding and filteration processes are relatively simple processes and most of the simulation works are on the reaction process. The practical operation data of phosphoric acid plant at Namhae Chemical Corp. were utilized in the simulation. The operation of the phosphoric acid plant is highly dependent on the heuristics of operators and so the expert system technology was employed. The operation of phosphoric acid plant varies with the origin of phosphate rock. Results of the simulation showed the optimal values of major process variables and optimal operating conditions. The knowledgebase for the expert system was constructed based on the interview with the experienced plant operators.

  • PDF

Development of Autonomous Biped Walking Robot (자립형 이족 보행 로봇의 개발)

  • Kim, Y.S.;Oh, J.M.;Baik, C.Y.;Woo, J.J.;Choi, H.S.
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.805-809
    • /
    • 2003
  • We developed a human-sized BWR(biped walking robot) named KUBIR1 driven by a new actuator based on the ball screw which has high strength and high gear ratio. KUBIR1 was developed to walk autonomously such that it is actuated by small torque motors and is boarded with DC battery and controllers. To utilize the information on the human walking motion and to analyze the walking mode of robot, a motion capture system was developed. The system is composed of the mechanical and electronic devices to obtain the joint angle data. By using the obtained data, a 3-D graphic interface was developed based on the OpenGL tool. Through the graphic interface, the control input of KUBIR1 is performed.

  • PDF

OMM (On-the-Machine Measurement) based on CAD Model (CAD 모델에 기초한 기상측정)

  • 김승록;박영근;권기복;박정환;고태조;김희술;김창일
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.169-172
    • /
    • 2000
  • In this paper, an OMM (On-the-Machine Measuring) system has been developed, which can perform measuring and inspection of sculptured surfaces of die and mold, by use of a scanning-type touch probe mounted into the spindle of a NC machine. The calibration procedures of a scanning prove (SP2-1, Renishaw) and an algorithm for measuring surface points by a ball-nosed stylus have been studied. The system has been developed based on commercial CAM software (Z-Master 2000), and tested through measuring a plastic injection molding-die. Also some experimental results of the calibration and measuring for given surface positions are analyzed to verify its accuracy and reliability.

  • PDF

5-Axis Tool Path Generation from Offset Polyhedral Mesh (옵셋 다면체를 이용한 5축 가공경로 생성)

  • Kim Su-Jin;Yang Min-Yang
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.6 s.249
    • /
    • pp.678-683
    • /
    • 2006
  • In this paper, the 5-axis tool path that has been generated from the original surface is, newly generated from the offset polyhedral mesh. In this approach, the interference check between two solid models can be simplified to that of offset polyhedral mesh and axis line. The tool path computation and interference check based on the offset mesh is simpler and faster than that based on the original surface. But 5-axis tool path generation using this approach is able to apply only for ball endmill and still takes longer time than 3-axis tool path generation.

Sliding Mode Control with Friction Observer for a Precise Mechanical System in the Presence of Nonlinear Dynamic Friction

  • Han, Seong-Ik
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.4 no.4
    • /
    • pp.296-304
    • /
    • 2002
  • A position tracking control schemes on the precise mechanical system in presence of nonlinear dynamic friction is proposed. A nonlinear dynamic friction is regarded as the bristle friction model to compensate effects of friction. The conventional sliding mode controller often has been used as a non-model-based friction controller, but it has a poor tracking performance in high-precision position tracking application since it completely cannot compensate the friction effect below a certain precision level. Thus to improve the precise position tracking performance, we propose the sliding mode control method combined with the friction-model-based observer having tunable structure of the transient response. Then this control scheme has a good transient response as well as the high precise tracking performance compared with the conventional sliding mode control without observer and the control system with similar type of observer. The experiments on the bali-screw drive table with the nonlinear dynamic friction show the feasibility of the proposed control scheme.