• Title/Summary/Keyword: Ball-Milling Method

Search Result 214, Processing Time 0.025 seconds

Effect of Heating Treatment of Silica Powder on Stirred Ball Milling Efficiency (규석 분말의 교반형 볼 밀 분쇄효율에 미치는 열처리의 영향)

  • 김병곤;박종력;최상근;이재장
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.7
    • /
    • pp.696-701
    • /
    • 2003
  • The grinding efficiencies of silica powder in a small scale stirred ball mill were investigated by energy consumption estimate. Comparing with a non-treated silica powder and a heating treated silica powder, it was found that a silica powder cooled in room temperature after heating treatment at 600∼900$^{\circ}C$ consumed lower grinding energy than non-treated silica powder, and a silica powder quenched after heating treatment consumed lower grinding energies about 52∼62%, in case of dry grinding. Additionally, if heating treated silica powder grind in wet method, energy consumption will be decreased about 40% than in dry grinding, and the dependency of the particle size to the grinding efficiency, quenching significantly improved it.

Characteristics of Thick Film Gas Sensors Using Nano ZnO:CNT (나노 ZnO:CNT를 이용한 후막 가스센서의 특성연구)

  • Yoon, So-Jin;Yu, Il
    • Korean Journal of Materials Research
    • /
    • v.24 no.8
    • /
    • pp.413-416
    • /
    • 2014
  • The effects of an addition of CNT on the sensing properties of nano ZnO:CNT-based gas sensors were studied for $H_2S$ gas. The nano ZnO sensing materials were grown by a hydrothermal reaction method. The nano ZnO:CNT was prepared by ball-milling method. The weight range of the CNT addition on the ZnO surface was from 0 to 10%. The nano ZnO:CNT gas sensors were fabricated by a screen-printing method on alumina substrates. The structural and morphological properties of the ZnO:CNT sensing materials were investigated by XRD, EDS, and SEM. The XRD patterns revealed that nano ZnO:CNT powders with a wurtzite structure were grown with (1 0 0), (0 0 2), and (1 0 1) dominant peaks. The size of the ZnO was about 210 nm, as confirmed by SEM images. The sensitivity of the nano ZnO:CNT-based sensors was measured for 5 ppm of $H_2S$ gas at room temperature by comparing the resistance in air with that in target gases.

Facile Synthesis of Highly Dispersed Ultra-fine ZrC Powders by Carbothermal Reduction Method Using Nanosized ZrO2 and Nanosized Graphite Powder Mixtures (나노크기의 ZrO2와 Graphite 분말 혼합체의 열탄소환원법에 의한 고분산 초미립 ZrC 분말의 합성)

  • Lee, Wha-Jun;Ryu, Sung-Soo
    • Journal of Powder Materials
    • /
    • v.20 no.2
    • /
    • pp.100-106
    • /
    • 2013
  • Ultra-fine zirconium carbide (ZrC) powder with nano-sized primary particles was synthesized by the carbothermal reduction method by using nano-sized $ZrO_2$ and nano-sized graphite powders mixture. The synthesized ZrC powder was well dispersed after simple milling process. After heat-treatment at $1500^{\circ}C$ for 2 h under vacuum, ultra-fine ZrC powder agglomerates (average size, $4.2{\mu}m$) were facilely obtained with rounded particle shape and particle size of ~200 nm. Ultra-fine ZrC powder with an average particle size of 316 nm was obtained after ball milling process in a planetary mill for 30 minutes from the agglomerated ZrC powder.

Synthesis of Magnetic Powder in the Sm-Fe-N System by the Reduction-Diffusion Process (환원-확산법에 의한 Sm-Fe-N계 자성분말 제조)

  • Lee, Jung-Goo;Kang, Seok-Won;Park, Sang-Jun;Oh, Yung-Woo;Choi, Chul-Jin
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.9
    • /
    • pp.842-846
    • /
    • 2010
  • In the present study, the reduction-diffusion method was employed to produce Sm-Fe alloy powder. It was confirmed that the amount of unreacted ${\alpha}-Fe$ in $Sm_2Fe_{17}$ matrix gradually decreased as the percentage of $Sm_2O_3$ increased. $Sm_2Fe_{17}$ single-phase powder was produced by the reduction-diffusion method with 40% excess $Sm_2O_3$. The Ca and Oxygen contents of the powder were approximately 300 ppm and 1600 ppm, respectively, after washing and acid treatment. By a subsequent nitrogenation, $Sm_2Fe_{17}N_x$ magnetic powders were produced. The coercivity of the powder increased with decreasing of the particle size by ball milling, and the highest coercivity of 2850 Oe was obtained after milling for 10 hours.

Fabrication and Characterization of High Purity of Fine Alumina from Korean Alunite and Sulfate Salts (국산 명반석과 황산염으로부터 고순도의 미세한 알루미나의 제조 및 특성에 관한 연구)

  • 변수일;이수영;김종희
    • Journal of the Korean Ceramic Society
    • /
    • v.16 no.1
    • /
    • pp.13-20
    • /
    • 1979
  • High purity alumina has been extracted form low grade Korean alunite. Alunite ore was treated by 15% $NH_4OH$ solution, followed by 10% $H_2SO_4$ leaching and metallic impurities such as Fe and Ti were removed by solvent extraction method. Alumina prepared by the extraction process was 99.9% in purity. Hot Petroleum Drying Method has been employed for the preparation of uniformly fine alumina powder, using chemical reagent aluminum sulfate and ammonium aluminum sulfate extrated from Korea alunite. The sinterability of alumina powder prepared by Hot Petroleum Drying Method was shown to be improved in comparison with the one treated by other methods such as ball milling method, but dry pressing was difficult due to the agglomeration of calcined powder. The best slip of alumina powder prepared by Hot Petroleum Drying Method contained a lower soild content than the one treated by other methods. The alumina body formed by soild and drain casting with the former alumina powder showed a higher sintered density.

  • PDF

The Machining Technique of Curved Surface through Constant Control of Cutting Speed Method in Ball End Milling (볼엔드밀 고속가공에서 곡면형상에 따른 절삭속도 일정제어기법 가공기술)

  • Kim, K.K.;Moon, S.J.;Kang, M.C.;Lee, D.W.;Kim, J.S.
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.753-759
    • /
    • 2001
  • The purpose of this study is to suggest the machining technique of the constant control of cutting speed in order to improve precision machining and tool life in high speed machining using ball end mill. Cutting speed is changed in machining free form surface like free form surface. So, we don't have supreme surface form and toll life on machining. The way to solving this problem is that we should be settled to optimal cutting speed in free form surface machining. And, to improve precision machining is executed high speed machining method to output optimum NC data with developed constant control of cutting speed program after modeling of CAD/CAM. In this paper, a comparison was made of the cutting precision and tool life in conventional cutting and those in free form surface machining applying the program developed.

  • PDF

Synthesis of Nano Size $BaCeO_3$ as an Effective Flux Pining Center for YBCO Superconductor (YBCO 초전도체의 효과적인 플럭스 피닝 센터로서의 나노 크기 $BaCeO_3$ 합성)

  • Youn, J.S.;No, K.S.;Kim, Y.H.;Jun, B.H.;Lee, J.P.;Jung, S.Y.;Kim, C.J.
    • Progress in Superconductivity
    • /
    • v.10 no.1
    • /
    • pp.12-16
    • /
    • 2008
  • In this work, nano size $BaCeO_3$, which is a possible flux pinning medium of melt processed $YBa_{2}Cu_{3}O_x$ superconductor, was synthesized by the conventional solid state reaction method using powders. $BaCeO_3$ and $CeO_2$ were mixed thoroughly using a ball milling for 24 hours and calcined at $1200^{\circ}C$ for 5 hours for the formation $BaCeO_3$ powder. The obtained $BaCeO_3$ powder was attrition milled at various milling times of 60 min, 120 min and 240 min. The $BaCeO_3$ powders of various milling times were mixed with $YBa_{2}Cu_{3}O_x$ powder. Seed melt processed $YBa_{2}Cu_{3}O_x$-$BaCeO_3$ (15wt.%) superconductors were prepared and the superconducting properties were investigated. It was found that $T_c$ of $Y_{1.5}Ba_{2}Cu_{3}O_x$ samples was not significantly affected by $BaCeO_3$ addition, but $J_c$ of samples was increased by $BaCeO_3$ addition. The $J_c$ improvement by fine $BaCeO_3$ powder (120 min attrition-milled) was effective at low magnetic fields less than 2 T.

  • PDF

Characterization and Synthesis of BN Fibers According to the Content of BN Nanopowder by Electrospinning Method (전기방사에 의한 질화붕소 나노분말의 함량에 따른 질화붕소 나노섬유 합성 및 특성 평가)

  • Lee, Jong Hyeok;Chun, Myoung Pyo;Hwang, Jin Ah;Jung, Young Geun;Chu, Jae Uk
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.31 no.7
    • /
    • pp.455-461
    • /
    • 2018
  • Boron nitride (BN) nanofibers were fabricated using BN nanoparticles (70 nm) by electrospinning. Morphologies such as the diameter and density of the BN nanofibers are strongly influenced by the viscosity and dispersion state of the precursor solution. In this study, the precursor solution was prepared by ball milling BN nanoparticles and polyvinylpyrrolidone (PVP, Mw~1,300,000) in ethanol, which was electrospun and then calcined to produce BN fibers. High-quality BN nanofibers were well fabricated at a BN concentration of 15 wt% with their diameters in the range of 500 nm to 800 nm; the viscosity of the precursor solution was $400mPa{\cdot}S$. The calcination of the as-electrospun BN fibers seemed to be completed by holding them at $350^{\circ}C$ for 2 h considering the TGA data. The morphologies and phases of the BN fibers were investigated by scanning electron microscopy (SEM) and X-ray diffractometry (XRD), respectively; Fourier transform infrared (FT-IR) was also used for structure analysis.

Effects of Mixing Method on the Preparation of PZT Ceramics and Its Electrical Characterization (Ⅰ) (製造方法에 따른 PZT Ceramics의 生成과 誘電特性에 미치는 影響 (第 1 報))

  • Sang Hee Cho
    • Journal of the Korean Chemical Society
    • /
    • v.24 no.1
    • /
    • pp.53-62
    • /
    • 1980
  • The present work is concerned with the studies on the production of PZT ceramics by newly developed mixing process, which tentatively named "precipitation mixing method", consists of precipitating lead carbontate in the presence of $TiO_2$ and/or $ZrO_2$. Mixtures of $PbCO_3$ and $TiO_2$ or $ZrO_2$ were compared with those obtained by ball-milling with special emphasis on the rate and mechanism of formation of lead titanate and lead zirconate. A possiblity for obtaining PZT ceramics by "precipitation mixing method" was established.

  • PDF

Particle Size Analysis of Nano-sized Talc Prepared by Mechanical Milling Using High-energy Ball Mill (고에너지 볼 밀을 이용한 나노 활석의 형성 및 입도 분석)

  • Kim, Jin Woo;Lee, Bum Han;Kim, Jin Cheul;Kim, Hyun Na
    • Journal of the Mineralogical Society of Korea
    • /
    • v.31 no.1
    • /
    • pp.47-55
    • /
    • 2018
  • Talc, hydrous magnesium phyllosilicate, is one of the most popular industrial minerals due to their chemical stability and adsorptivity. While micro-sized talc has long been used as a filler and coating, nano-sized talc recently is attracting attention as additives for improving the stability of nanocomposites. In this study, we produced the nano-sized talc powder by mechanical method using high energy ball mill and investigated the changes in particle size and crystallinity with increasing milling time up to 720 minutes. X-ray diffraction results show that the peak width of talc gradually as the milling proceeded, and after 720 minutes of pulverization, the talc showed an amorphous-like X-ray diffraction pattern. Lase diffraction particle size analysis presents that particle size of talc which was ${\sim}12{\mu}m$ decreased to ${\sim}0.45{\mu}m$ as the milling progressed, but no significant reduction of particle size was observed even after grinding for 120 minutes or more. BET specific surface area, however, steadily increases up to the milling time of 720 minutes, indicating that the particle size and morphology change steadily as the milling progressed. Scanning electron microscope and transmission electron microscope images shows that layered particles of about 100 to 300 nm was aggregated as micro-sized particles after pulverization for 720 minutes. As the grinding time increases, the particle size and morphology of talc continuously change, but the nano-sized talc particles form micro sized agglomerates. These results suggest that there is a critical size along the a, b axes in which the size of plates is reduced even though the grinding proceeds, and the reduction of plate thickness along the c axis leads the increase in specific surface area with further grinding. This study could enhance the understanding of the mechanism of the formation of nano-sized talc by mechanical grinding.