• 제목/요약/키워드: Ball robot

검색결과 100건 처리시간 0.023초

볼나사 구동기를 이용한 다관절 로봇의 모델링 및 제어 (Modeling & Control of a Multi-Joint Robot actuated by the Ball Screw)

  • 최형식;김영식;전대원
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1997년도 추계학술대회 논문집
    • /
    • pp.323-326
    • /
    • 1997
  • Conventional robots actuated by motors with the speed reducer such as harmonic drive had weakness in delivering loads, pressing, grinding, and cutting jobs. To overcome this, the developer a new type of robot actuated by the ball screw. The robot is an articulated shape, which is composed of four axes. The base axis is actuated similarly with conventional robot, but the others are actuated by four bars mechanism composed of the ball screw. We setup the dynamics model of the robot. The robot has parameter uncertainties and nonlinearlity due to the ball screw actuator. To coordinate the robot, we applied sliding-mode control.

  • PDF

볼나사를 이용한 매니퓰레이터의 모델링 및 슬라이딩모드 제어 (Modeling and Sliding-mode Control of a Robot Manipulator actuated by the Ball Screw)

  • 최형식;박용헌;정경식;이호식
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2001년도 춘계학술대회 논문집
    • /
    • pp.292-295
    • /
    • 2001
  • Conventional robots actuated by motors with the speed reducer such as harmonic drive had weakness in delivering loads, pressing, grinding, and cutting jobs. To overcome this, a new type of robot actuated by the ball screw was proposed. The ball screw is actuated by using four bar mechanism. The dynamics model of the robot was set up. The robot has parameter uncertainties and nonlinearlity due to the ball screw actuator. To coordinate the robot, the sliding-mode control was applied.

  • PDF

확장 작업업영역을 갖는 고속 3자유도 하이브리드 로봇 개발 (Development of a Novel 3-DOF Hybrid Robot with Enlarged Workspace)

  • 정성훈;김기성;곽경민;김한성
    • 한국산업융합학회 논문집
    • /
    • 제23권5호
    • /
    • pp.875-880
    • /
    • 2020
  • In this paper, a novel 3-DOF hybrid robot with enlarged workspace is presented for high speed applications. The 3-DOF hybrid robot is made up of one linear actuator and 2-DOF planar parallel robot in series. The actuation consists of one ball-screw to make one linear motion and two rotary ball-screws to transmit rotational motion to 2-DOF parallel robot. The workspace can be enlarged according to ball-screw stroke and the moving inertia can be reduced due to locating all the heavy actuators at the fixed base. The inverse kinematics and workspace analyses are presented. The robot prototype and PC-based control system are developed.

폐체인 구조의 새로운 다관절 로봇 매니퓰레이터 개발 (Development of a New Robot Manipulator Driven by the Closed-chain Actuator)

  • 최형식;백창열
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제27권2호
    • /
    • pp.238-245
    • /
    • 2003
  • To overcome the weakness in the load capacity of conventional robot manipulators actuated by motors with the speed reducer such as the harmonic driver, we proposed a new closed-chain type of the robot actuator which is composed of the four-bar-link mechanism driven by the ball screw. The robot manipulator is revolute-jointed and composed of four axes. The base axis is actuated by the lineal actuator such as the ball screw, and the others are actuated by the proposed actuator. We analyzed the mechanism of the actuators of the robot joints, and developed the dynamics model. The dynamics are expressed in the joint coordinates and then they are mapped into the sliding coordinates of the ball screw. We performed fundamental tests on the structure of the robot.

역진자 기반 공 로봇의 균형제어 (Balancing Control of a Ball Robot Based on an Inverted Pendulum)

  • 강석원;박찬익;변규호;이장명
    • 제어로봇시스템학회논문지
    • /
    • 제19권9호
    • /
    • pp.834-838
    • /
    • 2013
  • This paper proposes a new ball robot which has a four axis structure and four motors that directly actuate the ball to move or to maintain the balance of the robot. For the Balancing control, it is possible to use non-model-based controller to control simply without complex formula. All the gains of the controller are heuristically adjusted during the experiments. The tilt angle is measured by IMU sensors, which is used to generate the control input of the roll and pitch controller to make the tilt angle zero. The performance of the designed control system has been verified through the real experiments with the developed ball robot.

메카넘휠을 적용한 구형바퀴로봇(볼-봇)의 주행제어 (Travel Control of a Spherical Wheeled Robot (Ball-Bot) with Mecanum Wheel)

  • 서범석;박종은;박지설;이장명
    • 제어로봇시스템학회논문지
    • /
    • 제20권7호
    • /
    • pp.713-717
    • /
    • 2014
  • In this paper, the travel control of the spherical wheeled robot with a mecanum wheel is impelemented. Four typical wheels or three omni wheels are used to consist of the ball-bot. the slip is occured when the typical wheels is used to the ball-bot. In order to reduce these slip, the spherical wheeled robot with macanum wheels is proposed. Through some experiments, we find that the proposed spherical wheeled robot with a mecanum wheel is superior to the conventional spherical wheeled robot with typical wheels.

메카넘 휠을 이용한 볼-봇의 슬립률 감소와 균형 및 주행제어 (Slip Ratio Reduction and Moving Balance Control of a Ball-bot using Mecanum Wheel)

  • 박영식;김수정;변수경;이장명
    • 로봇학회논문지
    • /
    • 제10권4호
    • /
    • pp.186-192
    • /
    • 2015
  • This paper proposes a robust balance and driving control for omni-directional ball robot(generally called ball-bot) with two axis mecanum wheel. Slip between ball and mecanum wheel actuator inevitably occurs along diagonal axis due to its instantaneous strong torque. In order to reduce and saturate slip, exact distance calculation scheme especially for rotational movement is essential. So this research solved Euler-Lagrange dynamics for proposed two axis ball robot based on practical mechanical modeling. Robust balance control was carried out by PID controller according to the pitch and roll angles of ball robot by using sensor fusion between AHRS and wheel encoder. Proposed PID controller enhances stability by reducing steady state error and settling time. Proposed slip control algorithm for omni-directional ball robot has been demonstrated by experiments for balance control and arbitrary driving control.

무선통신을 이용한 주행 제어가 가능한 볼 로봇의 설계 및 제어 (Design and Control of Ball Robot capable of Driving Control by Wireless Communication)

  • 이승열;정명진
    • 전기전자학회논문지
    • /
    • 제23권4호
    • /
    • pp.1236-1242
    • /
    • 2019
  • 최근 로봇 기술의 발전에 따라 모바일 로봇에 대한 연구가 주목을 받고 있다. 현재 모바일 로봇의 대부분은 2륜 및 4륜 기반으로 개발되어 직선 주행에는 강하지만 방향전환 및 제자리 회전에 제한이 있으며, 이러한 문제점을 극복하고자 구 형태의 바퀴를 사용하는 볼 로봇에 대한 연구가 진행되고 있다. 볼 로봇은 협소한 공간에서 큰 제약 없이 이동이 가능하다는 장점을 가지고 있지만, 구조적으로 불안정하여 안정적인 자세 및 주행 제어가 요구된다. 본 연구에서는 무선통신으로 자세 및 주행 제어가 가능한 스마트폰 어플리케이션을 제안하고, 이를 적용하여 제작된 볼 로봇을 이용하여 자세 및 주행 제어 실험을 수행하였다. 실험을 통해 Roll 각도 오차 ±0.8도, Pitch 각도 오차 ±0.7도 이내에서 제어됨을 확인하였으며, 1m 주행제어에 대해 x축 방향 위치오차 ±0.1m, y축 방향 위치오차 ±0.08m 이내에서 제어됨을 확인하였다.

인체형 이족보행로봇의 개발 (Development of a Human-Sized Biped Walking Robot)

  • 최형식;박용헌;김영식
    • 제어로봇시스템학회논문지
    • /
    • 제8권6호
    • /
    • pp.484-491
    • /
    • 2002
  • We developed a new type of human-sized BWR (biped walking robot) driven by a new actuator based on the ball screw which has high strength and high gear ratio. Each leg of the robot is composed of three pitch joints and one roll joint. In all, a 10 degree-of-freedom robot with two balancing joints was developed. A new type of actuator for the robot is proposed, which is composed of four bar link mechanism driven by the ball screw. The robot overcomes the limit of the driving torque of conventional BWRs. The BWR was designed to walk autonomously by adapting small DC motors for the robot actuators and has a space to board DC battery and controllers. In the performance test, the BWR performed sitting-up and down motion, and walking motion. Through the test, we found the possibility of a high performance biped-walking.

단일 Camera를 이용한 Ball and Plate 로봇 제어장치 설계 (Design of Ball and Plate Robot controller using Single Camera)

  • 박이근;박주연;박성모
    • 한국멀티미디어학회논문지
    • /
    • 제16권2호
    • /
    • pp.213-225
    • /
    • 2013
  • 본 논문에서는 단일 카메라와 2개의 모터를 이용하는 볼-플레이트 로봇제어장치를 설계하는 방법과 제어 오차를 줄이는 방법을 제안한다. 볼-플레이트 시스템을 설계하기 위해서는 볼의 상태 파악과 플레이트의 균형 유지가 필요하다. 볼의 상태는 캠시프트 알고리즘을 이용하여 추적하고 칼만필터로 공의 위치 오차를 보정한다. 플레이트 균형은 두 개의 모터를 움직여 제어하는데 측정 오차가 적은 DC모터를 사용하였다. 플레이트의 표면적 상태나 공의 위치 추적오류 등을 인하여 작은 오차가 여전히 남아있다. 이러한 오차는 점점 쌓이게 되며 결국은 볼의 균형유지를 방해하게 된다. 이를 해결하기 위해 적분기를 추가한 제어기를 제안한다.