• Title/Summary/Keyword: Ball powder

Search Result 589, Processing Time 0.028 seconds

Color alterations of a PMMA resin for fixed interim prostheses reinforced with silica nanoparticles

  • Kotanidis, Alexandros;Kontonasaki, Eleana;Koidis, Petros
    • The Journal of Advanced Prosthodontics
    • /
    • v.11 no.4
    • /
    • pp.193-201
    • /
    • 2019
  • PURPOSE. The aim of the present study was to evaluate the color changes of an autopolymerizing PMMA resin used for interim fixed restorations, reinforced with $SiO_2$ nanoparticles. MATERIALS AND METHODS. Silica nanoparticles were blended with the PMMA resin powder through high-energy ball milling. Four shades of PMMA resin were used (A3, B3, C3, D3) and total color differences were calculated through the equations ${\Delta}E_{ab}=[({\Delta}L*)^2+({\Delta}a*)^2+({\Delta}b*)^2]^{1/2}$ and ${\Delta}E_{00}=[(\frac{{\Delta}L^{\prime}}{K_LS_L})^2+(\frac{{\Delta}C^{\prime}}{K_CS_C})^2+(\frac{{\Delta}H^{\prime}}{K_HS_H})^2+R_T(\frac{{\Delta}C^{\prime}}{K_CS_C})(\frac{{\Delta}H^{\prime}}{K_HS_H})]^{1/2}$. Statistically significant differences between ${\Delta}E_{ab}$ and the clinically acceptable values of 3.3 and 2.7 and those between ${\Delta}E_{00}$ and the clinically acceptable value of 1.8 were evaluated with one sample t-test (P<.05). Differences among the different shades were assessed through One-Way ANOVA and Bonferroni multiple comparison tests. RESULTS. Significantly lower values were detected for all groups concerning ${\Delta}E_{ab}$ compared to the intraorally clinical acceptable values of 3.3 and 2.7. Significantly lower mean values were detected for groups B3, C3, and D3, concerning ${\Delta}E_{00}$ compared to the intraorally clinical acceptant value of 1.8. Color pigments in red-brown (A3) and red-grey (D3) shades affect the total color change to a greater extent after the reinforcement with $SiO_2$ nanoparticles compared to the red-yellow (B3) shade. CONCLUSION. Within the limitations of this in vitro study, it can be suggested that reinforcing PMMA with $SiO_2$ nanoparticles at 0.25 wt% slightly affects the optical properties of the PMMA resin without being clinically perceivable.

Fabrication and Mechanical Properties of Nanostructured Al2O3-MgSiO3-SiO2 Composites Synthesized by Pulsed Current Activated Combustion of Mechanically Activated Powder (기계적 활성화된 분말로부터 펄스전류활성 연소합성에 의한 나노구조 Al2O3-MgSiO3-SiO2복합재료 제조 및 기계적 특성)

  • Shon, In-Jin;Kang, Hyun-Su;Doh, Jung-Mann;Yoon, Jin-Kook
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.7
    • /
    • pp.565-569
    • /
    • 2011
  • Nanopowders of MgO, $Al_2O_3$ and $SiO_2$ were made by high-energy ball milling. The fast sintering of nanostructured $Al_2O_3-MgSiO_3-SiO_2$ composites was investigated from mechanically activated powders of MgO, $Al_2O_3$ and $SiO_2$ by a pulsed-current activated sintering process. Nanocrystalline materials have received much attention as advanced engineering materials with improved physical and mechanical properties; in particular greater strength, hardness, excellent ductility and toughness. Highly dense nanostructured $Al_2O_3- MgSiO_3-SiO_2$ composites were produced with simultaneous application of 80 MPa and pulsed output current of 2800A within 2 minutes. The sintering behavior, grain size and mechanical properties of $Al_2O_3-MgSiO_3-SiO_2$ composites were investigated.

Y2O3-stabilized ZrO2, Ni, and graphene-added Mg by reactive mechanical grinding processing for hydrogen storage and comparison with Ni and Fe2O3 or MnO-added Mg

  • Song, Myoung Youp;Choi, Eunho;Kwak, Young Jun
    • Journal of Ceramic Processing Research
    • /
    • v.20 no.6
    • /
    • pp.609-616
    • /
    • 2019
  • The optimum powder to ball ratio was examined, which is one of the important conditions in reactive mechanical grinding processing. Yttria (Y2O3)-stabilized zirconia (ZrO2) (YSZ), Ni, and graphene were chosen as additives to enhance the hydriding and dehydriding rates of Mg. Samples with a composition of 92.5 wt% Mg + 2.5 wt% YSZ + 2.5 wt% Ni + 2.5 wt% graphene (designated as Mg-2.5YSZ-2.5Ni-2.5graphene) were prepared by grinding in hydrogen atmosphere. Mg-2.5YSZ-2.5Ni-2.5graphene had a high effective hydrogen-storage capacity of almost 7 wt% (6.85 wt%) at 623 K in 12 bar H2 at the second cycle (n = 2). Mg-2.5YSZ-2.5Ni-2.5graphene contained Mg2Ni phase after hydriding-dehydriding cycling. Mg-2.5YSZ-2.5Ni-2.5graphene had a larger quantity of hydrogen absorbed for 60 min, Ha (60 min), than Mg-2.5Ni-2.5graphene and Mg-2.5graphene. The addition of YSZ also increased the initial dehydriding rate and the quantity of hydrogen released for 60 min, Hd (60 min), compared with those of Mg-2.5Ni-2.5graphene. Y2O3-stabilized ZrO2, Ni, and graphene-added Mg had a higher initial hydriding rate and a larger Ha (60 min) than Fe2O3, MnO, or Ni and Fe2O3-added Mg at n = 1.

Particle Size Analysis of Nano-sized Talc Prepared by Mechanical Milling Using High-energy Ball Mill (고에너지 볼 밀을 이용한 나노 활석의 형성 및 입도 분석)

  • Kim, Jin Woo;Lee, Bum Han;Kim, Jin Cheul;Kim, Hyun Na
    • Journal of the Mineralogical Society of Korea
    • /
    • v.31 no.1
    • /
    • pp.47-55
    • /
    • 2018
  • Talc, hydrous magnesium phyllosilicate, is one of the most popular industrial minerals due to their chemical stability and adsorptivity. While micro-sized talc has long been used as a filler and coating, nano-sized talc recently is attracting attention as additives for improving the stability of nanocomposites. In this study, we produced the nano-sized talc powder by mechanical method using high energy ball mill and investigated the changes in particle size and crystallinity with increasing milling time up to 720 minutes. X-ray diffraction results show that the peak width of talc gradually as the milling proceeded, and after 720 minutes of pulverization, the talc showed an amorphous-like X-ray diffraction pattern. Lase diffraction particle size analysis presents that particle size of talc which was ${\sim}12{\mu}m$ decreased to ${\sim}0.45{\mu}m$ as the milling progressed, but no significant reduction of particle size was observed even after grinding for 120 minutes or more. BET specific surface area, however, steadily increases up to the milling time of 720 minutes, indicating that the particle size and morphology change steadily as the milling progressed. Scanning electron microscope and transmission electron microscope images shows that layered particles of about 100 to 300 nm was aggregated as micro-sized particles after pulverization for 720 minutes. As the grinding time increases, the particle size and morphology of talc continuously change, but the nano-sized talc particles form micro sized agglomerates. These results suggest that there is a critical size along the a, b axes in which the size of plates is reduced even though the grinding proceeds, and the reduction of plate thickness along the c axis leads the increase in specific surface area with further grinding. This study could enhance the understanding of the mechanism of the formation of nano-sized talc by mechanical grinding.

Effect of Hollow Glass Powder on the Self-Compacting Concrete (유공 유리분말이 자기충전 콘크리트의 특성에 미치는 영향)

  • Yoon, Seob;Han, Min-Cheol
    • Journal of the Korea Institute of Building Construction
    • /
    • v.18 no.2
    • /
    • pp.141-149
    • /
    • 2018
  • In this study, compacting, passing performance, segregation resistance and rheological properties were tested to improve the stability of fresh concrete in the production and construction of self-compacting concrete (SCC) using hollow glass powder(GB). As a result, T50 reaching time was shortened up to amount of GB $2.0kg/m^3$. The compacting according to the amount of GB was improved by ball bearing effect of GB. However, T50 reaching time was slightly increased at $4.0kg/m^3$. In the case of passing performance, the result showed that plain was Class 1, GB $0.5{\sim}2.0kg/m^3$ was Class 0, GB $4.0kg/m^3$ was Class 1. Therefore, the passing performance was improved with 'No blocking' up to amount of GB $2.0kg/m^3$. Passing performance Block step (PJ) number by J-ring method was also best at GB $1.0kg/m^3$. In the case of segregation resistance according to the amount of GB, dynamic segregation resistance was increased compared to plain regardless of the amount of GB. And static segregation resistance showed 2.5% of segregation rate at GB $1.0kg/m^3$. Therefore, it was greatly improved compared to plain (12.5%). In the case of rheology property according to the amount of GB, plastic consistency by increasing of GB content didn't show big difference. However, yield stress by increasing of GB content was decreased with GB $1.0kg/m^3$. In conclusion, GB $1.0kg/m^3$ was effective for improvement of compacting, passing performance and yield stress. Also, it will be useful for stability of SCC by improving segregation.

Synthesis and characterization of soft magnetic composite in Fe2O3-Mg system by mechanical alloying (기계적합금화에 의한 Fe2O3-Mg계 연자성 콤포지트의 합성 및 평가)

  • Lee, Chung-Hyo
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.25 no.6
    • /
    • pp.245-251
    • /
    • 2015
  • We have applied mechanical alloying (MA) to produce soft magnetic composite material using a mixture of elemental $Fe_2O_3$-Mg powders. An optimal milling and heat treatment conditions to obtain soft magnetic ${\alpha}$-Fe/MgO composite with fine microstructure were investigated by X-ray diffraction, differential scanning calorimetry (DSC) and vibrating sample magnetometer (VSM) measurement. It is found that ${\alpha}$-Fe/MgO composite powders in which MgO is dispersed in ${\alpha}$-Fe matrix are obtained by MA of $Fe_2O_3$ with Mg for 30 min. The saturation magnetization of ball-milled powders increases with increasing milling time and reaches to a maximum value of 69.5 emu/g after 5 h MA. The magnetic hardening due to the reduction of the ${\alpha}$-Fe grain size by MA was also observed. Densification of the MA powders was performed in a spark plasma sintering (SPS) machine at $800{\sim}1000^{\circ}C$ under 60 MPa. X-ray diffraction result shows that the average grain size of ${\alpha}$-Fe in ${\alpha}$-Fe/MgO nanocomposite sintered at $800^{\circ}C$ is in the range of 110 nm.

Effect of Stress Induced Phase Transformation on $Al_2 O_3$ Matrix Dispersed with $ZrO_2-Y_2O_3$ ($Y_2O_3-ZrO_2$$Al_2 O_3$ 매트릭스에 분산시 응력 유기 상변태의 효과)

  • Lee, Tae-Keun;Lim, Eung-Keuk;Kim, Hwan
    • Journal of the Korean Ceramic Society
    • /
    • v.22 no.1
    • /
    • pp.11-18
    • /
    • 1985
  • The effect of stress induced phase transformation on $Al_2 O_3$ matrix dispersed with $ZrO_2-Y_2O_3$ has been studied. In order to determinate the mechanical properties three $Al_2O_3-ZrO_2$ composite series containing 1, 3 and 5 mole% $Y_2O_3$ were prepared. The starting materials were $Al_2O_3$ and $ZrO_2-Y_2O_3$ which was prepared from the aqueous solution of high purity $YCl_3$.$6H_2O$ and $ZrOCl_2$.$8H_2O$. Powder mixtures of $Al_2O_3-ZrO_2$ containing $Y_2O_3$ have been prepared by ball-milling with methanol and the samples were formed by isostatic press and sintered at 150$0^{\circ}C$ for 2hrs. After sintering. the specimens were polished for mechanical determination. The relative density of sintered specimens were also measured. It was found that the addition of 1, 3mole% to {{{{ { ZrO}_{2 } }} allowed full retention of the tetragonal phase in $Al_2O_3-ZrO_2$ but partially stabilized zirconia (PSZ) was produced by additions of 5 mole% $Y_2O_3$.The critical stress-intensity factor KIc of $A_2O_3-ZrO_2$ (containing 1 mole% $Y_2O_3$) composite materials increased with increasing $ZrO_2$ content, The maximum value of KIC=7Mn/$m^3$/2 at 20 mole% $ZrO_2$ exhibited about twice that of the $Al_2 O_3$ The modulus of rupture exhibited a trend similiar to KIC The maximum value of MOR was 580MN/m2. As the amount of Y2O3 increase it was observed that the maximum of KIC and MOR decreased : Additions of 3 mole% $Al_2O_3$ $Y_2O_3$ allowed the maximum of KIC 6MN/$m^3$/2 MOR 540MN/$m^2$ at 15 mole% $ZrO_2$ additions of 5 mole% $Y_2O_3$ allowed the maximum of KIC 5MN/$m^3$/2 MOR 410MN/$m^2$ at 10 mole% $ZrO_2$.

  • PDF

An Innovative Solution for the Power Quality Problems in Induction Motor by Using Silica and Alumina Nano Fillers Mixed Enamel for the Coatings of the Windings

  • Mohanadasse, K.;Sharmeela, C.;Selvaraj, D. Edison
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.4
    • /
    • pp.1621-1625
    • /
    • 2015
  • Power quality has always been a concern of power engineers. Certainly an argument can be successfully made that most parts of power engineering have the ultimate objective to improve power quality. AC motors were widely used in industrial and domestic applications. Generally, AC motors were of two types: Induction and Synchronous motors. In motor many parameters like different load cycling, switching, working in hot weather and unbalances creates harmonics which creates major reasons for temperature rise of the motors. Due to high peak value of voltage, harmonics can weaken insulation in cables, windings and capacitors and different electronic components. Higher value of harmonics increase the motor current and decrease the power factor which will reduce the life time of the motor and increase the overall rating of all electrical equipments. Harmonics reduction of all the motors in India will save more power. Coating of windings of the motor with nano fillers will reduce the amount of harmonics in the motor. Based on the previous project works, actions were taken to use the enamel filled with various nano fillers for the coating of the windings of the different AC motors. Ball mill method was used to convert the micro particles of Al2O3, SiO2, TiO2, ZrO2 and ZnO into nano particles. SEM, TEM and XRD were used to augment the particle size of the powder. The synthesized nano powders were mixed with the enamel by using ultrasonic vibrator. Then the enamel mixed with the nano fillers was coated to the windings of the several AC motors. Harmonics were measured in terms of various indices like THD, VHD, CHD and DIN by using Harmonic analyzer. There are many other measures and indices to describe power quality, but none is applicable in all cases and in many instances, these indices may hide more than they show. Sometimes power quality indices were used as a basis of comparison and standardization. The efficiency of the motors was increased by 5 – 10 %. The thermal withstanding capacity of the motor was increased by 5º to 15º C. The harmonics of the motors were reduced by 10 – 50%.

Manufacture of Ordinary Portland Cement Clinker Using Cement Paste of the Waste Concrete (폐콘크리트로부터 회수된 시멘트 페이스트 미분말의 시멘트 원료화 연구)

  • Ahn, Ji-Whan;Kim, Hyung-Seok;Cho, Jin-,Sang;Han, Gi-Chun;Han, Ki-Suk;Kim, Hwan
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.8
    • /
    • pp.804-810
    • /
    • 2003
  • The fine powder produced by heating and grinding of the waste concrete in the waste construction was investigated whether utilize as substitution raw material of SiO$_2$, CaO, and Al$_2$O$_3$ source for OPC clinker manufacture is possible or not. In order to synthesize OPC clinker, limestone, shale, converter slag and fly ash were used as main raw materials, and modulus was fixed LSF 91.0, SM 2.60, IM 1.60. The synthesized clinkers were characterized. The Main products of synthesized clinker were C$_3$S, ${\beta}$-C$_2$S, C$_3$A, C$_4$AF as OPC clinker at 1,43$^{\circ}C$. As a result of TG-DTA and burnability index(B.U) analysis of each raw mixtures, the formation temperature of clinker phases was similar and B.I was showed easy burning as 48.6∼51.4.

Preparation of PMN-PT-BT Powder by Modified Mixed Oxide Method and Effect of Ag on Dielectric Properties (Modified Mixed Oxide 방법에 의한 PMN-PT-BT 분말 합성 및 그의 물성에 미치는 Ag의 영향)

  • Lim, Kyoung-Ran;Jeong, Soon-Yong;Kim, Chang-Sam
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.2
    • /
    • pp.159-163
    • /
    • 2002
  • A single phase perovskite relaxor ferroelectric PMN-PT-BT was prepared by a single calcination and the modified mixed oxide process. It was accomplished by ball-milling PbO, $Nb_2O_5,\;Ti(OC_3H_7)_4,\;BaCO_3,\;and\;Mg(NO_3)_2$ instead of MgO, removing the solvent, and then followed by calcination at 900$^{\circ}C$ for 2h. The specimen sintered at 1100$^{\circ}C$/2h showed the sintered density of 7.83 g/$cm^3$, room temperature dielectric constant of 22000, and dielectric loss of 2.5%. Addition of 1.0 mole% (0.3 wt%) of Ag as $AgNO_3$ and followed by calcination at 550$^{\circ}C$/2h lowered the sintering temperature to 900$^{\circ}C$. It still showed the sintered density of 7.88 g/$cm^3$, room temperature dielectric constant of 20000 and dielectric loss of 2.4%.