• Title/Summary/Keyword: Ball on Disk

Search Result 184, Processing Time 0.025 seconds

Analysis of Mean Deviation in Sliding-wear-rate of Carbon Steel with Various Pearlite Volume Fractions (탄소강의 펄라이트 분율에 따른 미끄럼 마멸속도 편차 분석)

  • Kim, M.G.;Gwon, H.;Hur, H.L.;Kim, Y.-S.
    • Transactions of Materials Processing
    • /
    • v.24 no.3
    • /
    • pp.205-211
    • /
    • 2015
  • The current investigation was performed to study sliding-wear-rate deviation (wear-rate data scatter) in carbon steels with various microstructures. Pure iron, 0.2 wt. % C steel, 0.45 wt. % C steel, and bearing steel (AISI52100) were used for the investigation. These steels possess different microstructures. Microstructures of the pure iron, two carbon steel and the bearing steel were full ferrite, ferrite + pearlite and full pearlite, respectively. Depending on the carbon content, the carbon steel had different pearlite-volume fractions. Dry sliding wear tests of the steel were conducted using a ball-on-disk wear tester at a sliding speed of 0.1 m/s using a bearing ball (AISI52100) as a counterpart. Applied load and sliding distance were 100 N and 300 m, respectively. More than three (up to twelve) tests were conducted for each steel under the same conditions, and the mean deviations in the wear rate of the steel (microstructure) were compared. The wear-rate deviation in the steel with ferrite + pearlite microstructure was higher than that with ferrite microstructure, and the deviation decreased with the increase of pearlite volume fraction. The pure iron and the bearing steel specimens showed much less deviation. The high deviation observed from the ferrite + pearlite steel was attributed to irregular subsurface-crack nucleation and growth at the interface between the two micro constituents (ferrite and pearlite) during the wear test.

Effect of an temperatures of post-spray heat treatment on wear behavior of $8%Y_2O_3-ZrO_2$ coating

  • Chae, Y.H.;Kim, S.S.
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.181-182
    • /
    • 2002
  • Most recent, Plasma ceramic spray is used on parts of tribosystem, has been investigated on the tribological performance. The application of ceramic coatings by plasma spray has become essential in tribosystems to produce better wear resistance and longer life in various conditions. The purpose of this work was to investigate the wear behavior of $8%Y_2O_3-ZrO_2$ coating due to temperatures of post-spay heat treatment. The plasma-sprayed $8%Y_2O_3--Zirconia$ coating was idiscussed to know the relationship between phase transformations and temperatures of post- spray heat treatment. Wear tests was carried out with ball on disk type on normal load of 50N, 70N and 90N under room temperature. The transformation of phase and the value of residual stress were measured by X-ray diffraction method(XRD). Tribological characteristics and wear mechanisms of coatings was observed by SEM. The tribologieal wear performance was discussed a point of view for residual stress. Consequently. post-spray heat treatment plays an important role in decreasing residual stress. Residual stress in coating system has a significant influence on the wear mechanism of coating.

  • PDF

Wear Mechanism of CrN Coating on Aluminum Alloys Deposited by AIP Method

  • Kim, Seock-Sam;Suh, Chang-Min;Murakami, Ri-ichi
    • KSTLE International Journal
    • /
    • v.3 no.1
    • /
    • pp.43-48
    • /
    • 2002
  • Dry sliding wear and friction test of CrN coaling on two types of aluminum alloy substrates,6061 Al and 7075 Al deposited by arc ion plating, was peformed with a ball-on-disk tribometer. The effects of normal Bead and the mechanical properties of substrate on the friction coefficient and wear-resistance of CrN coating were investigated. The worn surfaces were observed by SEM. The results show that surface micro-hardness of CrN- coated 7075 Al is higher than that of CrN-coated 6061 Al. With an increase in normal lead, wear volume increases, while the friction coefficient decreases. The friction coefficient of CrN-coated 6061 Al is higher than that of CrN-coated 7075 Al, while the wear-resistance of CrN-coated 6061 Al is lower than the CrN-coated 7075 Al's, which indicates that the substrate mechanical properties have strong inf1uences on the friction coefficient and wear of CrN coating. The main wear mechanism was fragments of CrN coating, which were caused by apparent plastic deformation of substrate during wear test.

Tribological Behavior of Boundary Lubricated Sliding Surfaces Using Three Different Spacing of Surface Profiles

  • Oh, Se-Doo;Lee, Young-Ze
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.11
    • /
    • pp.1428-1434
    • /
    • 2002
  • The ball-on-disk type sliding tests with boundary lubricated steels were carried out to verify the effect of initial spacing in surface profiles on wear and scuffing. Three kinds of surface spacing, which are closely related with initial surface micro-cracks on sliding surfaces, were produced on AISI 1045 steel surfaces using different grinding and polishing processes. Frictional forces and time to scuffing were measured, and the shape and amount of wear particles were analyzed to compare the with original surface profiles. From the tests, it was confirmed that the size of wear particles are related closely to the original spacing of the surface profile. The time to failure and amount of wear were sensitive to the surface spacing. The wider surface spacing shows much longer sliding life and smaller amount of wear than the others. Time to scuffing was increased with increasing surface pro(lie spacing. The size of wear particles increased while the wear and wear rate K were decreased with an increase in surface spacing. After the sliding tests, surface cracks of inner parts of the wear track formed due to scuffing were observed and compared among the specimens having the different surface spacing.

The Low Temperature Deposition of CrN Films by the AIP Method (아크 이온플레이팅법에 의한 저온 CrN 합성)

  • Cho, Yong K.;Kim, Sang K.;Lee, Won B.;Kim, Sung W.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.20 no.2
    • /
    • pp.78-83
    • /
    • 2007
  • CrN coatings were deposited by cathodic arc ion plating method on the SKD11 steel substrates. Atmosphere temperature of $350^{\circ}C$, arc current of 90 A, nitrogen partial pressure of 1.0-5.3 Pa, and negative bias voltage of 30-135 V were selected. The characteristics of microstructure were investigated with XRD. Hardness, adhesion and friction coefficient measured by microhardness tester, scratch tester, and ball on disk tribometer. Microstructures depended on nitrogen partial pressure and bias voltage. The preferred orientation of the films was changed from (200) to (111) with decreasing pressure and increasing bias voltage. Adhesion properties related with microstructure, but microstructure changes slightly influenced on hardness and friction properties. The critical load.($Lc_1$) and hardness of CrN films deposited at 5.3 Pa, -30 V condition were 55 N(HF1), $2157{\pm}47\;Hk_{0.025}$. The friction coefficient were about 0.5 under dry condition.

Estimation of Tribological Properties on Surface Modified SiC by Chlorine Gas Reaction at Various Temperatures (다양한 온도에서 염소가스 반응에 의해 표면 개질된 SiC의 트라이볼로지 특성평가)

  • Bae, Heung-Taek;Jeong, Ji-Hoon;Choi, Hyun-Ju;Lim, Dae-Soon
    • Journal of the Korean Ceramic Society
    • /
    • v.46 no.5
    • /
    • pp.515-519
    • /
    • 2009
  • Carbon layers were fabricated on silicon carbide by chlorination reaction at temperatures between $1000^{\circ}C$ and $1500^{\circ}C$ with $Cl_2/H_2$ gas mixtures. The effect of reaction temperature on the micro-structures and tribological behavior of SiC derived carbon layer was investigated. Tribological tests were carried out ball-on-disk type wear tester. Carbon layers were characterized by X-ray diffractometer, Raman spectroscopy and surface profilometer. Both friction coefficients and wear rates were maintained low values at reaction temperature up to $1300^{\circ}C$ but increased suddenly above this temperature. Variation of surface roughness as a function of reaction temperature was dominant factor affecting tribological transition behavior of carbon layer derived from silicon carbide at high temperature.

Effect of Mechanical Polishing Pretreatment on Tribological Properties of Manganese Phosphate Coating of Carbon Steel (기계적 연마 전처리가 인산망간 피막의 윤활 특성에 미치는 영향)

  • Kim, Ho-Young;Noh, Young-Tai;Jeon, Jun-Hyuck;Kang, Ho-Sang
    • Journal of the Korean institute of surface engineering
    • /
    • v.52 no.6
    • /
    • pp.350-356
    • /
    • 2019
  • In this study, the effect of mechanical polishing of carbon steel on the tribological properties of manganese phosphate coating on carbon steel has investigated. The microstructure, surface morphology and chemical composition were analyzed by SEM, EDS, and XRD. The surface roughness test was carried out in order to calculate Rvk value by 3D laser microscopy. Also, the tribology property of manganese phosphate coating was tested by ball-on disk. In the results of EDS analysis, coating layer consists of elements such in Mn, P, Fe, and O. XRD showed that (Mn,Fe)5H2(PO4)4·4H2O in manganese phosphate coating layer was formed by the chemical reaction between manganese phosphate and elements in carbon steel. As the mechanical polishing degree increased, the friction coefficient was reduced. The rougher the mechanical polishing degree, the better corrosion resistance was obtained.

Sliding Wear Characteristics of plasma Sprayed $8\%Y_{2}O_3-ZrO_2$ Coating for Post-spray Heat Treatment

  • Chae Young-Hun;Kim Seock-Sam
    • KSTLE International Journal
    • /
    • v.6 no.2
    • /
    • pp.45-50
    • /
    • 2005
  • Plasma ceramic spray that is applied on a machine part under severe work conditions has been investigated for tribological behavior. The application of ceramic coatings by plasma spray has become essential in tribosystems to produce wear resistance and long life in severe conditions. The purpose of this study was to investigate the wear characteristics of $8\%Y_{2}O_3-ZrO_2$ coating, in view of the effect of post-spay heat treatment. The plasma-sprayed $8\%Y_{2}O_3-ZrO_2$ coating was studied to know the relationship between phase transformations and wear behavior related to post-spray heat treatment. Wear test was carried out with ball on disk type on normal loads of 50N,70N and 90N under room temperature. The phase transformation of phase and the value of residual stress were measured by X-ray diffraction method(XRD). Tribological characteristics and wear mechanisms of coatings were observed by SEM. The tribological wear performance was discussed in the focusing of residual stress. Consequently, post-spray heat treatment plays an important role in decreasing residual stress. Residual stress in the coating system has a significant influence on the wear mechanism of coating.

Morphological Analysis of Wear Particles using Fractal Parameters

  • Cho, Y.S.;Park, H.S.
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.457-458
    • /
    • 2002
  • The fractal dimension is the characteristics that can quantitatively define the irregularity in natural. It is useful in describing the morphology or various rubbed surface for hydraulic piston motor instead of the stylus profiling method. But fractal parameters had not constructed on the morphological characteristic or rubbed surface because of the insufficient knowledge about a conception of fractal dimension. In this study, for the purpose or applying fractal I parameters practically, we have suggested way to establish the morphological characteristic of rubbed surface with fractal parameters, and we carried out an experiment on the lubricant friction and wear by using Ball-ON-Disk type tester. Materials were the brass and the bronze which are used to slipper-pad in the hydraulic piston motor. We searched for fractal parameters or surface structure with the digital image processing, Surface fractal dimension can be determined by sum of intensity difference of surface pixel. Using the image processing and fractal parameters for rubbed surface in the friction and wear test, morphology of rubbed sur race can be effectively obtained by fractal dimensions.

  • PDF

A Study on the Formation and the Tribological Role of Mass Transfers Layers at Rubbing Silver-coated Surface (은 박막이 코팅된 표면에서 물질전이층의 형성 및 그 트라이볼로지적 역할에 관한 연구)

  • Yang, Seung-Ho;Kong, Ho-Sung;Yoon, Eui-Sung;Kim, Dae-Eun
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.05a
    • /
    • pp.45-52
    • /
    • 2002
  • The tribological role of mass transfer layer was studied with silver coatings under various ranges of load and sliding speed. Silver coating was performed with a functionally gradient coating method. Tests were performed in dry sliding conditions, using a ball-on-disk contact configuration, at the load of 0.0196-17.64 N and the sliding speed of 20-1,000 mm/s in ambient air. Optical microscope and EPMA analyses showed that contact surfaces were covered with the mass transfer layers of agglomerated wear particles depending upon the contact conditions, and they greatly influenced the tribological characteristics of the surfaces. However, the formation of mass transfer layer was suppressed as the sliding speed increased, and above a critical sliding speed, no mass transfer layer was able to form. For building up a general framework of tribological behavior of the coated silver films, all test data were summarized on a map whose axes are contact pressure and sliding speed.

  • PDF