• Title/Summary/Keyword: Ball milling process

Search Result 371, Processing Time 0.028 seconds

Mechanical Alloying and Combined Process of in-situ and ex-situ to Fabricate the ex-situ C-doped $MgB_2$ Wire (기계적 합금화 및 in-situ와 ex-situ의 혼합공정을 통한 C 도핑된 ex-situ $MgB_2$ 선재 제조)

  • Hwang, Soo-Min;Lee, Chang-Min;Lim, Jun-Hyung;Choi, Jun-Hyuk;Park, Jin-Hyun;Joo, Jin-Ho;Jun, Byung-Hyuk;Kim, Chan-Joong
    • Progress in Superconductivity
    • /
    • v.10 no.2
    • /
    • pp.79-86
    • /
    • 2009
  • We successfully fabricated C-doped ex-situ $MgB_2$ wires using two different methods such as mechanical alloying(MA) and combined process(CP) of in-situ and ex-situ. In the MA, the precursor powder was prepared with a mixture of $MgB_2$ and 1 at% C powders by planetary ball milling for 0-100 h. In the CP, on the other hand, C-doped $MgB_2$ powder was prepared with Mg, B, and C powders by in-situ process via compaction, sintering, and crushing. The powders prepared by two methods were loaded into Fe tube and then the assemblages were drawn by a conventional powder-in-tube technique. The MA treatment of C-added $MgB_2$ decreased the particles/grains size and resulted in C-doping into $MgB_2$ after sintering, improving the critical current density($J_c$) in high external magnetic field. For the C-doped $MgB_2$ wire by MA for 25 h, the $J_c$ was $4.1{\times}10^3A/cm^2$ at 5 K and 6.4 T, which was 5.9 times higher than that of pure and untreated $MgB_2$ wire. The CP also provided C-doping into $MgB_2$ and improved the $J_c$ in high magnetic field; the C-doped $MgB_2$ wire fabricated by CP exhibited a $J_c$ being 2.3 times higher than that of the ex-situ wire used commercial $MgB_2$ powder at 5 K and 6.0 T($2.7{\times}10^3A/cm^2\;vs.\;1.2{\times}10^3A/cm^2$).

  • PDF

Structural and Electrochemical characterization of LiCoO2 Nano Cathode Powder Fabricated by Mechanochemical Process (기계 화학법에 의해 제작된 나노 LiCoO2 양극 분말의 구조 및 전기화학적 특성)

  • Choi, Sun-Hee;Kim, Joo-Sun;Yoon, Young-Soo
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.1
    • /
    • pp.86-91
    • /
    • 2004
  • $LiCoO_2$ cathode powders with round particle shaped and nano grain sized of 70-300nm were synthesized by a mechanochemical method. The surface of Li-Co precursor prepared by freeze drying method was modified by $K_2SO_4$ coating and ball milling was used for the coating process. The precursor was crystallized to high temperature form of $LiCoO_2$ at $800^{\circ}C$ and the grain growth was inhibited by the $K_2SO_4$ coating effect. The $K_2SO_4$ coating was not decomposed at $800^{\circ}C$ and prevented the contact in the Li-Co precursor particles. The nano-sized $LiCoO_2$ powder had tetragonal phase and it affected the Li diffusion through the surface of particles. It means that the anode materials for hight performance battery should be satisfied not only small particle size but phase contol on the surface of particles. In this study, the powder characteristics and rate capabilities were compared with a commercial powder and the nano-sized $LiCoO_2$ powder fabricated by the mechanochemical method. And the crucial factor which affects on battery performance was also examined.

Synthesis and Electrochemical Characteristics of Mesoporous Silicon/Carbon/CNF Composite Anode (메조기공 Silicon/Carbon/CNF 음극소재 제조 및 전기화학적 특성)

  • Park, Ji Yong;Jung, Min Zy;Lee, Jong Dae
    • Applied Chemistry for Engineering
    • /
    • v.26 no.5
    • /
    • pp.543-548
    • /
    • 2015
  • Si/C/CNF composites as anode materials for lithium-ion batteries were examined to improve the capacity and cycle performance. Si/C/CNF composites were prepared by the fabrication process including the synthesis and magnesiothermic reduction of SBA-15 to obtain Si/MgO by ball milling and the carbonization of phenol resin with CNF and HCl etching. Prepared Si/C/CNF composites were then analysed by BET, XRD, FE-SEM and TGA. Among SBA-15 samples synthesized at reaction temperatures between 50 and $70^{\circ}C$, the SBA-15 at $60^{\circ}C$ showed the largest specific surface area. Also the electrochemical performances of Si/C/CNF composites as an anode electrode were investigated by constant current charge/discharge test, cyclic voltammetry and impedance tests in the electrolyte of LiPF6 dissolved in mixed organic solvents (EC : DMC : EMC = 1 : 1 : 1 vol%). The coin cell using Si/C/CNF composites (Si : CNF = 97 : 3 in weight) showed better capacity (1,947 mAh/g) than that of other composition coin cells. The capacity retention ratio decreased from 84% (Si : CNF = 97 : 3 in weight) to 77% (Si : CNF = 89 : 11 in weight). It was found that the Si/C/CNF composite electrode shows an improved cycling performance and electric conductivity.

Characteristics of Crystallinity and Morphology of Barium Titanate Particles Prepared by Spray Pyrolysis (분무열분해 공정에 의해 합성된 바륨 티타네이트 분말의 결정화 및 형태 특성)

  • Lee, Kyo Kwang;Jung, Kyeong Youl;Kim, Jung Hyun;Koo, Hye Young;Ju, Seo Hee;Kang, Yun Chan
    • Korean Chemical Engineering Research
    • /
    • v.43 no.4
    • /
    • pp.517-524
    • /
    • 2005
  • Barium titanate ($BaTiO_3$) particles were prepared by spray pyrolysis from spray solution containing organic additives. The effects of the type and amount of organic precursors on the crystal structure and morphology of the $BaTiO_3$ particles were investigated. It was found that the morphology of $BaTiO_3$ particles before and after calcination depended on the type of organic additives such as citric acid, ethylene glycol and polyethylene glycol. Among these organic additives, citric acid was the most effective to prepare $BaTiO_3$ particles with nano-structured morphology consisting with uniform size nanometer particles after calcination. It was also found that the phase transformability of the metastable cubic phase to the tetragonal one during calcination could be improved by increasing the content of citric acid in the spray solution. As a result, $BaTiO_3$ particles prepared from spray solution containing high concentration of citric acid had good tetragonality, uniform and fine size, and high BET surface area after calcination. $BaTiO_3$ particles prepared by spray pyrolysis had nanometer size and uniform morphology after simple ball milling process.

Electrochemical Study of Nanoparticle Li4Ti5O12 as Negative Electrode Material for Lithium Secondary Battery (리튬이차전지 음극재용 나노입자 Li4Ti5O12의 전기화학적 연구)

  • Oh Mi-Hyun;Kim Han-Joo;Kim Young-Jae;Son Won-Keun;Lim Kee-Joe;Park Soo-Gil
    • Journal of the Korean Electrochemical Society
    • /
    • v.9 no.1
    • /
    • pp.1-5
    • /
    • 2006
  • Lithium titanium oxide $(Li_4Ti_5O_{12})$ with spinel-framework structures as anode material for lithium-ion battery was prepared by sol-gel and high energy ball milling (HEBH) method. According to the X-ray diffraction (XRD), Particle Size Analyses(PSA) and scanning electron microscopy (SEM) analysis, uniformly distributed $Li_4Ti_5O_{12}$ particles with grain sizes of 100 nm were observed. Half cells, consisting of $Li_4Ti_5O_{12}$ as working electrode and lithium foil as both counter and reference electrodes showed the high performance of high rate discharge capacity and 173 mAh/g at 0.2C in the range of $1.0\sim2.5 V$. Furthermore, the crystalline structure of $Li_4Ti_5O_{12}$ didn't transform during the lithium intercalation and deintercalation process.

Preparation of PMN-PT-BT Powder by Modified Mixed Oxide Method and Effect of Ag on Dielectric Properties (Modified Mixed Oxide 방법에 의한 PMN-PT-BT 분말 합성 및 그의 물성에 미치는 Ag의 영향)

  • Lim, Kyoung-Ran;Jeong, Soon-Yong;Kim, Chang-Sam
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.2
    • /
    • pp.159-163
    • /
    • 2002
  • A single phase perovskite relaxor ferroelectric PMN-PT-BT was prepared by a single calcination and the modified mixed oxide process. It was accomplished by ball-milling PbO, $Nb_2O_5,\;Ti(OC_3H_7)_4,\;BaCO_3,\;and\;Mg(NO_3)_2$ instead of MgO, removing the solvent, and then followed by calcination at 900$^{\circ}C$ for 2h. The specimen sintered at 1100$^{\circ}C$/2h showed the sintered density of 7.83 g/$cm^3$, room temperature dielectric constant of 22000, and dielectric loss of 2.5%. Addition of 1.0 mole% (0.3 wt%) of Ag as $AgNO_3$ and followed by calcination at 550$^{\circ}C$/2h lowered the sintering temperature to 900$^{\circ}C$. It still showed the sintered density of 7.88 g/$cm^3$, room temperature dielectric constant of 20000 and dielectric loss of 2.4%.

High Coulombic Efficiency Negative Electrode(SiO-Graphite) for Lithium Ion Secondary Battery (리튬이온이차전지용 고효율 음극(SiO-Graphite))

  • Shin, Hye-Min;Doh, Chil-Hoon;Kim, Dong-Hun;Kim, Hyo-Seok;Ha, Kyung-Hwa;Jin, Bong-Soo;Kim, Hyun-Soo;Moon, Seong-In;Kim, Ki-Won;Oh, Dae-Hui
    • Journal of the Korean Electrochemical Society
    • /
    • v.11 no.1
    • /
    • pp.47-50
    • /
    • 2008
  • A new anode composition material comprising of SiO and Graphite has been prepared by adopting High energy ball milling (HEBM) technique. The anode material shows high initial charge and discharge capacity values of 1139 and 568 mAh/g, respectively. The electrode sustains reversible discharge capacity value of 719 mAh/g at 30th cycle with a high coulombic efficiency${\sim}99%$. Since the materials formed during initial charge process the nano silicon/$Li_4SiO_3$ and $Li_2O$ remains as interdependent, it may be expected that the composite exhibiting higher amount of irreversibility$(Li_2O)$ will deliver higher reversible capacity. In this study, constant current-constant voltage (CC-CV) charge method was employed in place of usual constant current (CC) method in order to convert efficiently all the SiO particles which resulted high initial discharge capacity at the first cycle. We improved considerably the initial discharge specific capacity of SiO/G composite by pretreatment(CC-CV).

High Temperature Oxidation Behavior of Fe-14Cr Ferritic Oxide Dispersion Strengthened Steels Manufactured by Mechanical Alloying Process (기계적 합금화 공정으로 제조된 Fe-14Cr Ferritic 산화물 분산 강화(ODS) 합금 강의 고온 산화 거동)

  • Kim, Young-Kyun;Park, Jong-Kwan;Kim, Hwi-Jun;Kong, Man-Sik;Lee, Kee-Ahn
    • Journal of Powder Materials
    • /
    • v.24 no.2
    • /
    • pp.133-140
    • /
    • 2017
  • This study investigates the oxidation properties of Fe-14Cr ferritic oxide-dispersion-strengthened (ODS) steel at various high temperatures (900, 1000, and $1100^{\circ}C$ for 24 h). The initial microstructure shows that no clear structural change occurs even under high-temperature heat treatment, and the average measured grain size is 0.4 and $1.1{\mu}m$ for the as-fabricated and heat-treated specimens, respectively. Y-Ti-O nanoclusters 10-50 nm in size are observed. High-temperature oxidation results show that the weight increases by 0.27 and $0.29mg/cm^2$ for the as-fabricated and heat-treated ($900^{\circ}C$) specimens, and by 0.47 and $0.50mg/cm^2$ for the as-fabricated and heat-treated ($1000^{\circ}C$) specimens, respectively. Further, after 24 h oxidation tests, the weight increases by 56.50 and $100.60mg/cm^2$ for the as-fabricated and heat-treated ($1100^{\circ}C$) specimens, respectively; the latter increase is approximately 100 times higher than that at $1000^{\circ}C$. Observation of the surface after the oxidation test shows that $Cr_2O_3$ is the main oxide on a specimen tested at $1000^{\circ}C$, whereas $Fe_2O_3$ and $Fe_3O_4$ phases also form on a specimen tested at $1100^{\circ}C$, where the weight increases rapidly. The high-temperature oxidation behavior of Fe-14Cr ODS steel is confirmed to be dominated by changes in the $Cr_2O_3$ layer and generation of Fe-based oxides through evaporation.

Treatment of Spent ion-Exchange Resins from NPP by Supercritical Water Oxidation(SCWO) Process (초임계수 산화공정에 의한 원전 폐수지 처리기술)

  • Kim, Kyeong-Sook;Son, Soon-Hwan;Song, Kyu-Min;Han, Joo-Hee;Han, Kee-Do;Do, Seung-Hoe
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.7 no.3
    • /
    • pp.175-182
    • /
    • 2009
  • The spent cationic exchange resins and anionic exchange resins were separated from mixed spent exchange resins by a fluidized bed gravimetric separator. The separated resins were identified by an elemental analysis and thermogravimetric analysis. The each test sample was prepared by diluting the slurry made by wet ball milling the cationic exchange resins and the anionic exchange resins separated as a spherical granular form for 24 hours. The resulting test samples showed a slurry form of less than $75{\mu}m$ of particle size and 25,000ppm of $COD_{cr}$. The decomposition conditions of each test samples from a thermal power plant were obtained with a lab-scale(reactor volume : 220mL) supercritical water oxidation(SCWO) facility. Then pilot plant(reactor volume : 24 L) tests were performed with the test samples from a thermal power plant and a nuclear power plant successively. Based on the optimal decomposition conditions and the operation experiences by lab-scale facility and the pilot plant, a commercial plant(capacity : 150kg/h) can be installed in a nuclear power plant was designed.

  • PDF

Preparation of Nanocomposite Metal Powders in Metal-Carbon System by Mechanical Alloying Process (기계적 합금화 방법에 의한 금속-카본계에서의 나노복합금속분말의 제조)

  • Kim, Hyun-Seung;Lee, Kwang-Min
    • Korean Journal of Materials Research
    • /
    • v.8 no.4
    • /
    • pp.328-336
    • /
    • 1998
  • In metal-carbon system with no mutual solubility between matrix and alloying elements as solid or liquid phases, Cu-C-X nanocomposite metal powders were prepared by high energy ball milling for solid-lubricating bronze bearings. Elemental powder mixtures of Cu-lOwt.%C- 5wt. %Fe and Cu- lOwt. %C- 5wt. %Al were mechanically alloyed with an attritor in an argon atmosphere, and then microstructural evolution of the Cu-C-X nanocomposite metal powders was examined. It has been found that after 10 hours of MA, the approximately 10$\mu\textrm{m}$ sized Cu-C- X nanocomposite metal powders can be produced in both compositions. Morphological characteristics and microstructural evolution of the Cu-C-X powders have shown a similar MA procedure compared to those of metal-metal system. As a result of X - ray diffraction analysis, diffraction peaks of Cu and C were broaden and peak intensities were decreased as a function of MA time. Especially, the gradual disappearance of C peaks in the X- ray spectra is proved to be due to the lower atomic scattering factor of C. The calculated Cu crystallite sizes in Cu- C- X nanocomposite metal powders by Williamson- Hall equation were about lOnm size, on the other hand, the observed ones by TEM were in the range of 10 to 30nm.

  • PDF