Browse > Article
http://dx.doi.org/10.4150/KPMI.2017.24.2.133

High Temperature Oxidation Behavior of Fe-14Cr Ferritic Oxide Dispersion Strengthened Steels Manufactured by Mechanical Alloying Process  

Kim, Young-Kyun (Department of Materials Science and Engineering, Inha University)
Park, Jong-Kwan (R&D Center, Korea Sintered Metal Co., Ltd.)
Kim, Hwi-Jun (Korea Institute of Industrial technology)
Kong, Man-Sik (Institute for Advanced Engineering)
Lee, Kee-Ahn (Department of Materials Science and Engineering, Inha University)
Publication Information
Journal of Powder Materials / v.24, no.2, 2017 , pp. 133-140 More about this Journal
Abstract
This study investigates the oxidation properties of Fe-14Cr ferritic oxide-dispersion-strengthened (ODS) steel at various high temperatures (900, 1000, and $1100^{\circ}C$ for 24 h). The initial microstructure shows that no clear structural change occurs even under high-temperature heat treatment, and the average measured grain size is 0.4 and $1.1{\mu}m$ for the as-fabricated and heat-treated specimens, respectively. Y-Ti-O nanoclusters 10-50 nm in size are observed. High-temperature oxidation results show that the weight increases by 0.27 and $0.29mg/cm^2$ for the as-fabricated and heat-treated ($900^{\circ}C$) specimens, and by 0.47 and $0.50mg/cm^2$ for the as-fabricated and heat-treated ($1000^{\circ}C$) specimens, respectively. Further, after 24 h oxidation tests, the weight increases by 56.50 and $100.60mg/cm^2$ for the as-fabricated and heat-treated ($1100^{\circ}C$) specimens, respectively; the latter increase is approximately 100 times higher than that at $1000^{\circ}C$. Observation of the surface after the oxidation test shows that $Cr_2O_3$ is the main oxide on a specimen tested at $1000^{\circ}C$, whereas $Fe_2O_3$ and $Fe_3O_4$ phases also form on a specimen tested at $1100^{\circ}C$, where the weight increases rapidly. The high-temperature oxidation behavior of Fe-14Cr ODS steel is confirmed to be dominated by changes in the $Cr_2O_3$ layer and generation of Fe-based oxides through evaporation.
Keywords
Ball milling; Oxide dispersion strengthening; Ferritic steel; High temperature; Oxidation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 M. K. Miller, E. A. Kenik, K. F. Russell, L. Heatherly, D. T. Hoelzer and P. J. Maziasz: Mater. Sci. Eng. A, 353 (2003) 140.   DOI
2 M. J. Alinger, G. R. Odette and D. T. Hoelzer: Acta Mater., 57 (2009) 392.   DOI
3 A. Hirata, T. Fujita, Y. R. Wen, J. H. Schneibel, C. T. Liu and M. W. Chen: Nat. Mater., 10 (2011) 922.   DOI
4 J. H. Kim, T. S. Byun, D. T. Hoelzer, C. H. Park, J. T. Yeom and J. K. Hong: Mater. Sci. Eng. A, 559 (2013) 111.   DOI
5 J. H. Gwon, J. H. Kim and K. A. Lee: J. Nucl. Mater., 459 (2015) 205.   DOI
6 C. S. Tiwary, A. Verma, S. Kashyp, K. Biswas and K. Chattopadhyay: Metall. Mater. Trans. A, 44 (2013) 1917.   DOI
7 W. J. Quadakkers: Oxidation of ODS alloys, J. Phys., IV France 3 (1993) 177.   DOI
8 B. A. Pint and I. G. Wright: J. Nucl. Mater., 307-311 (2002) 763.   DOI
9 T. Kaito, T. Narita, S. Ukai and Y. Matsuda: J. Nucl. Mater., 329-333 (2004) 1388.   DOI
10 H. K. D. H. Bhadeshia: Mater. Sci. Eng. A, 223 (1997) 64.   DOI
11 M. Dade, J. Malaplate, J. Garnier, F. D. Geuser, N. Lochet and A. Deschamps: J. Nucl. Mater., 472 (2016) 143.   DOI
12 T. Liu, L. Wang, C. Wang and H. Shen: Corros. Sci., 104 (2016) 17.   DOI
13 S. Y. Cheng, S. L. Kuan and W. T. Tsai: Corros. Sci., 48 (2006) 634.   DOI