• 제목/요약/키워드: Ball milling process

검색결과 371건 처리시간 0.025초

NiCuZn Ferrite 분말제조에 있어서 Ball Mill 분쇄 공정 중에 혼입되는 불순물의 함량 (Impurity Pick-Up for the Preparation of NiCuZn Ferrite Powder Using Ball Milling Process)

  • 고재천;류병환
    • 한국자기학회지
    • /
    • 제9권4호
    • /
    • pp.217-222
    • /
    • 1999
  • 공업적으로 세라믹공정에 많이 사용되고 있는 습식 볼밀링으로 NiCuZn ferrite 제조과정 중 혼입되는 불순물의 양을 조사 검토하였다. NiO, CuO, ZnO 및 Fe2O3의 화학조성을 변화시켜 25 vol%로 혼합하고 스테인레스 볼밀로 습식방법을 이용하여 18시간 분쇄한 후 건조시켜 $700^{\circ}C$ 3시간 하소하였다. 하소한 분말을 다시 상기와 같은 방법으로 65시간 스테인레스 볼밀로 최종 분쇄하여 저온소결용 NiCuZn ferrite(NCZF) 소재를 제조하였다. NCZF 연자성 소재를 만드는 동안 혼합 분쇄과정에서 혼입되는 불순물의 스테인레스 스틸의 양은 산화철 및 산화니켈의 함량에 많은 영향을 받았고, 하소 후의 분쇄과정에서 혼입되는 불순물의 양은 결정화된 정도에 따라 영향을 받았다. 전자기적 특성을 갖는 화학조성의 조절을 위하여, 출발원료의 함량에 따라 분쇄과정에서 혼입되는 스테인레스 스틸의 함량을 도출하는 형식을 유도하였다.

  • PDF

기계적 밀링공정에 의한 은 플레이크 분말 제조 (Fabrication of Silver Flake Powder by the Mechanical Milling Process)

  • 정해영;이길근
    • 한국분말재료학회지
    • /
    • 제23권1호
    • /
    • pp.54-60
    • /
    • 2016
  • This study focuses on fabricating silver flake powder by a mechanical milling process and investigating the formation of flake-shaped particles during milling. The silver flake powder is fabricated by varying the mechanical milling parameters such as the amount of powder, ball size, impeller rotation speed, and milling time of the attrition ballmill. The particle size of the silver flake powder decreases with increasing amount of powder; however, it increases with increasing impeller rotation speed. The change in the particle size of the silver flake powder is analyzed based on elastic collision between the balls, taking energy loss of the balls due to the powder into consideration. The change in the particle size of the silver flake powder with mechanical milling parameters is consistent with the change in the diameter of the elastic deformation contact area of the ball, due to the collision between the balls, with milling parameters. The flake-shaped silver particles are formed at the elastic deformation contact area of the ball due to the collision.

알루미늄 호일 스크랩의 볼밀링 (Ball Milling of Aluminum Foil Scrap)

  • 홍성현;김병기
    • 연구논문집
    • /
    • 통권29호
    • /
    • pp.131-139
    • /
    • 1999
  • The effect of ball milling conditions in the milling of aluminium foil scraps was studied. Initial foil thickness, ball size. content of oleic acid. weight ratio of mineral spirits/foil. charged amount of foil were varied in wet ball milling process. It is impossible to make flake powders by milling of foil scraps with thickness $120 \mum$. As foil thickness decreases from $60\mum$ to $6.5\mum$, Mean size of powder milled for 30 h decreases from 107 µm to 17 µm. Bigger ball is slightly beneficial for milling of foils to the flake powders due to the larger impact energy produced by them. It is impossible to mill the foil without oleic acid to fabricate the flake powder. As content of oleic acid increases from 1.5 % to 5 %, mean size of flake powder milled for 30 h is drastically decreased. For the mineral spirits content below 50 %, foil scrap was not milled because sliding motion of balls by lubricant effect between balls and wall of container. As weight ratio of mineral spirits and foil increase over 100 %, foils were milled powders with mean powder size 15 - 20 때 irrespective of mineral spirits content due to reduced lubricant effect. As charged amount of foil decreases, mean powder size decreases due to increased collision frequency between ball and foil.

  • PDF

능선 궤적법을 이용한 볼엔드밀 가공면 해석 (Analysis of Machined Surfaces by Ball-end Milling using the Ridge Method)

  • 정태성;남성호;박진호;양민양
    • 한국정밀공학회지
    • /
    • 제21권1호
    • /
    • pp.51-60
    • /
    • 2004
  • Ball-end milling is one of the most common manufacturing processes for the parts with sculptured surface. However, the conventional roughness model is not suitable for the evaluation of surface texture and roughness under highly efficient machining conditions. Therefore, a different approach is needed for the accurate evaluation of machined surface. In this study, a new method, named ‘Ridge method’, is proposed for the effective prediction of the geometrical roughness and the surface topology in ball-end milling. Theoretical analysis of a machined surface texture was performed considering the actual trochoidal trajectories of cutting edge. The characteristic lines of cut remainder are defined as three-types of ‘Ridges’ and their mathematical equations are derived from the surface generation mechanism of ball-end milling process. The predicted results are compared with the results of conventional method. The agreement between the results predicted by the proposed method and the values calculated by the simulation method shows that the analytic equations presented in this paper are useful for evaluating a geometrical surface roughness of ball -end milling process.

볼밀링에서 볼 배합비 선택을 위한 혼합물 실험계획 및 분석 (Design and Analysis of Mixture Experiments for Ball Mix Selection in the Ball Milling)

  • 김성준;최재영;신현호
    • 품질경영학회지
    • /
    • 제42권4호
    • /
    • pp.579-590
    • /
    • 2014
  • Purpose: Ball milling is a popular process for obtaining fine powders in the part and material industry. One of important issues in the ball milling is to produce particles with a uniform size. Although many factors affect uniformity of particles, this paper focuses on the choice of ball diameter. Consider a ball milling where balls can be taken with three different diameters. The purpose of this paper is to find a ball mix which minimizes the average particle size. Methods: Ball diameters are selected as 10mm, 3mm, and 0.5mm. In order to find an optimum mixing ratio, the method of mixture experiments is employed in this paper. Taguchi's signal-to-noise ratio (SNR) for smaller-the-better type is also used to analyze experimental data. Results: According to the experimental result, SNR is maximized when the ball mix is taken as either 7:3:0 or 6:4:0. Such mixing ratios can be technically validated in terms of porosity reduction. Conclusion: The ball mixing technique presented in this paper provides a useful way to improve the production efficiency with a low cost.

Effect of Ball-mill Treatment on Powder Characteristics, Compaction and Sintering Behaviors of ell-AUC and ex-ADU $UO_2$ Powder

  • Na, Sang-Ho;Kim, Si-Hyung;Lee, Young-Woo;Sohn, Dong-Seong
    • Nuclear Engineering and Technology
    • /
    • 제34권1호
    • /
    • pp.60-67
    • /
    • 2002
  • The effects of ball-milling time(0 ~4 hrs) have been investigated on the change of powder characteristics, compaction behavior (compaction pressure range : 200 ~400MPa) and sinterability (1700'c in Ha atmosphere) of two different UO$_2$ powders (ex-ADU and ex-AUC) prepared by the wet process. It is observed that, while the ex-ADU UO$_2$ was little affected, the ex-AUC UO$_2$ was largely affected by the ball-milling treatment. This may be attributed to the characteristics of particle size formed during the preparation step, i.e.., the former has a small average size of about 1.0${\mu}{\textrm}{m}$, while the latter has a relatively large average size of about 301n. It appeared that the effective size reduction by ball-milling treatment is limited to the particle size larger than l${\mu}{\textrm}{m}$, and to the extent of maximum decrease in size of about 0.5tn. In the case of ex-AUC UO$_2$, it is observed that the particle size decreased with ball-milling time and green density and sintered density of the pellets prepared from ball-milled powder increased compared with those of pellets prepared from the as-received powder under the same conditions. This may be attributed mainly to the fine particles formed during the ball-milling treatment.

W-Cu 복합분말의 제조를 위한 기계화학적 공정에서 볼 밀링 시간에 따른 환원거동 (Effect of Ball-milling Time on Reduction Behavior in Mechanochemical Process for Preparation of W-Cu Composite Powders)

  • 김대건;이강원;석명진;김영도
    • 한국재료학회지
    • /
    • 제13권3호
    • /
    • pp.169-173
    • /
    • 2003
  • W-Cu composite powders can be prepared by mechanochemical process, where the $WO_3$-CuO composite powders were mechanically synthesized from the elemental oxide powders and subsequently reduced to W-Cu composite powders. In the present work, reduction behavior of$ WO_3$-CuO composite powders that were synthesized at different milling time was examined in terms of hygrometric analysis. In case of $WO_3$-CuO ball-milled for 20 h, the reaction temperature of CuO\longrightarrowCu became lower than in case of 1 h. Also, the reaction of $WO_3$\longrightarrow$WO_{2.9-2.72}$ and $WO_{2.9-2.72}$ \longrightarrow$WO_2$were shifted to lower temperatures and the peaks were changed to much sharper shape. While the reaction of $WO_2$\longrightarrowW in case of ball-milling for 20 h started at lower temperature, the peak temperature was the same as in 1 h ball-milling. The reduced W particle size was somewhat finer fer 20 h ball-milling. It was considered that the refinement of oxide particles caused by ball-milling process leads to such a change in the reduction behavior.

Correlation between Acoustic Intensity and Ground Particle Size in Alumina Ball Mill Process

  • Cho, Kyeong-Sik;Kim, Soo-Hyun;Lee, Young Hun
    • 한국세라믹학회지
    • /
    • 제55권3호
    • /
    • pp.275-284
    • /
    • 2018
  • In the ball milling process of ceramic powders, according to economic considerations for industrial applications, it is very important to quickly determine the optimum process condition with the maximum grinding efficiency. However, it is still difficult to determine the optimum condition for a ball mill with respect to the various process parameters, such as the rotational speed and the milling time. Ball milling was carried out at the same starting conditions with given amounts of alumina powders, balls and water, and was conducted slower or faster or a critical rotational speed was just determined by observing the angular position of the slurry in a semi-translucent polyethylene laboratory container. With respect to the different rotational speeds, which were slower or faster than the critical rotational speed, the particle size distribution of the grained powders and the acoustic intensity caused by cascading of the balls led to various behaviors. From the results of the particle size distribution and the acoustic signal analysis in the ball milling, there was one rotational speed that made the finest milled powder with maximum acoustic intensity. As a result, there was a correlation between the ground particle size and the acoustic intensity, which yields the interpretation that it can be possible in-situ to determine the optimum condition of ball milling by acoustic signal without repeated measurement efforts.

고속 볼 엔드밀 가공에서 절삭속도 최적화 (Optimization cutting speed in high speed ball end milling)

  • 김경균;강명창;정융호;이득우;김정석
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2001년도 춘계학술대회 논문집
    • /
    • pp.895-898
    • /
    • 2001
  • This paper presents an optimization cutting speed(OCS) program developed to improve the machining precision and tool life in high speed machining using ball end milling. This program optimized the cutting speed that is changing at any time in free surface machining of an automobile part like a connecting load die. The technique of optimization cutting speed makes the CAD/CAM-generated NC code go through a reverse post process, conducts cutting simulation, and obtain the effective tool diameter of the ball end milling. Then it changes the spindle revolution to within the range of critical cutting speed fit for the material of the workpieces depending upon the effective tool diameter. In this study, the machining precision and tool life were compared for the two connecting load dies processed using the general cutting method and the proposed optimization cutting speed technique, respectively.

  • PDF

기계적 합금화법에 의한 Al/AlN 복합체 제조 및 PCA 영향 (Synthesis of Al/AlN Composites by Mechanical Alloying and the Effect of PCA on Their Properties)

  • 김석현;김용진;안중호
    • 한국분말재료학회지
    • /
    • 제18권3호
    • /
    • pp.238-243
    • /
    • 2011
  • Al/AlN composites were synthesized by mechanical alloying using process control agents(PCAs). Three different PCAs which contain N element, were examined to see the effectiveness of ball-milling and the nitridation during sintering. Among examined PCAs, $C_8H_6N_4O_5$ was the most effective to facilitate ball-milling and to form nitrides during a subsequent sintering. By a proper control of ball-milling and sintering, we could obtained surface-hardened Al-based composites.