• Title/Summary/Keyword: Ball bearing life

Search Result 60, Processing Time 0.023 seconds

Stress based Fatigue Life Prediction for Ball Bearing (볼 베어링의 응력 기반 접촉피로수명 예측)

  • Kim, Tae-Wan;Cho, Yong-Joo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.5
    • /
    • pp.44-55
    • /
    • 2007
  • The method for fatigue life prediction of ball bearing is proposed applying the algorithm of contact fatigue prediction based on stress analysis. In order to do this, a series of simulation such as initial surface stress analysis, EHL analysis, subsurface stress analysis and fatigue analysis are conducted from the loading at each ball location calculated for a bearing subjected to external bearing load and contact shape function. And uniaxial fatigue tests are performed to obtain fatigue parameter of AISI 52100 steel. It was found that since stress is usually higher at the inner raceway contact than at the outer raceway contact, fatigue failure occurs on the inner raceway first. When the fatigue life calculated in the stress-based method are compared with L50 life of L-P model, Crossland criterion for the radial load increment is similar to L50 life and Dang Van criterion for the axial load increment is similar. In the case of EHL contact, there is no difference of fatigue life between dry contact and EHL contact, when maximum Hertz pressure exceeds 2.5GPa.

Fatigue Life Analysis for Angular Contact Ball Bearing with Angular Misalignment (각 어긋남을 고려한 각접촉 볼베어링의 피로수명 해석)

  • Bae, Gyu-Hyun;Tong, Van-Canh;Hong, Seong-Wook
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.1
    • /
    • pp.53-61
    • /
    • 2016
  • Angular misalignment has a significant effect on the characteristics of angular contact ball bearings (ACBBs). This paper presents an analysis of fatigue life for ACBBs subjected to angular misalignment. A simulation model is developed with de Mul's bearing model and the ISO basic reference rating life model. Simulation is performed to calculate the life of the ACBBs subjected to angular misalignment. The numerical results show that angular misalignment influences the load distribution significantly, thus reducing the bearing rating life. The fatigue life of ACBBs is decreased by angular misalignment regardless of axial preload, external radial load and rotational speed. The results show that angular misalignment should be maintained at less than 1mrad for ACBBs.

Synthesis of WS$_2$ Solid Lubricant and Its Application to the Ball Bearing (WS$_2$ 고체윤활제의 합성 및 구름베어링 적용)

  • 신동우;윤대현;최인혁;김경도
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1998.04a
    • /
    • pp.173-179
    • /
    • 1998
  • The processing conditions for the synthesis of platelet WS$_2$ lubricant powder through the solid-gas reaction were optimized. The tungsten and sulfur powders were sealed in a vacuum of 10$^{-6}$ torr, prior to heat-treating at 850$\circ$C for 8 days. The react~on product showed the well-developed platelet WS$_2$ powder with an average size of 3.8 $\mu$m. The synthesized WS$_2$ powder was coated on the commercial deep grooved ball bearing (No. 6203) to examine the effects of WS$_2$ coating layer on the noise and endurance of the ball bearing. The level of noise obtained from WS$_2$ coated-ball bearing was higher (56 dB) than the value occurred in the case of greece (37 dB). The life-time of the ball-bearing assembled after coating WS$_2$ powder increased 50 times compared to the non-coated bali-bearing.

  • PDF

Finite Element Analysis on the Shaft Fitting to Inner Raceway of Radial Ball Bearing (레이디얼 볼베어링의 내륜 끼워맞춤에 관한 유한요소해석)

  • Ko, Byung-Du;Lee, Ha-Sung
    • Design & Manufacturing
    • /
    • v.6 no.1
    • /
    • pp.45-51
    • /
    • 2012
  • The main goal of this paper is to establish an interference tolerance for determining optimal amount of clearance in the shaft-bearing system supported by radial ball bearings. The 2-D frictional contact model was employed for the FE analysis between the shaft and the inner raceway. Several examples were simulated using different material properties for the solid shaft. Efforts were focused on the deformation applied in the radial direction to select suitable bearings. The analysis results showed that the initial axial preload applied on the bearings plays a significant role to reduce bearing fatigue life. The proposed design parameters obtained by numerical simulations can approximately predict a rate of bearing life reduction as a function of shaft diameter ratio. This analysis can also be used to calculate the optimal initial radial clearance in order to obtain a shaft-bearing system design for high accuracy and long life.

  • PDF

Life Evaluation of Grease for Ball Bearings According to Temperature, Speed, and Load Changes (온도, 속도, 그리고 하중 변화에 따른 볼 베어링용 그리스의 수명평가)

  • Son, Jeonghoon;Kim, Sewoong;Choi, Byong Ho;Lee, Seungpyo
    • Tribology and Lubricants
    • /
    • v.37 no.1
    • /
    • pp.7-13
    • /
    • 2021
  • Ball bearing is a device that supports and transmits a load acting on a rotating shaft, and it is a type of rolling bearings that uses the rolling friction of the balls by inserting balls between the inner ring and the outer ring. Grease, which is prepared by mixing a thickener with a base oil, is a lubricant commonly used in bearings and has the advantage of a simple structure and easy handling. Bearings are increasingly being used in high value-added products such as semiconductors, aviation, and robots in the era of the 4th industrial revolution. Accordingly, there is an increasing demand for bearing grease. The selection of grease is an important factor in the bearing design. Therefore, a study must be conducted on the grease life evaluation to select an appropriate grease according to operating conditions such as a high temperature, high rotational speed, and high load. In this study, we evaluate the life of ball-bearing grease according to various operating conditions, namely, temperature, speed, and load changes. For this, we develop and theoretically verify a grease life test machine for ball bearings. We conduct a life test of grease according to various operating conditions of bearings and predict the grease life with a 10% and 50% failure probability using the Weibull analysis. In addition, we analyze the oxide characteristics of the grease over time using the Fourier transform infrared spectroscopy and the deterioration characteristics of the grease using the carbonyl index.

Load Distribution, Contact and Fatigue Life Analysis for Ball Bearing of Under Moment Load (모멘트 하중을 고려한 볼베어링의 하중분배, 접촉 및 피로수명 해석)

  • Kim, Young-Kuk;Moon, Seok-Man;Kim, Tae-Wan;Cho, Yong-Joo
    • Tribology and Lubricants
    • /
    • v.27 no.3
    • /
    • pp.162-166
    • /
    • 2011
  • This study is aimed to predict the fatigue life for bearings under combined radial, thrust and moment load. In order to do this, a series of simulation such as bearing load distribution, initial surface stress, subsurface stress and fatigue analysis is needed. And using the bearing's material fatigue property we can predict fatigue life for ball bearing.

Analysis of the Rolling Contact Fatigue of the Shot Peened Ball Bearing by X-ray Diffraction (X선회절에 의한 SHOT PEENING처리 구름베어링의 구름접촉 피로해석)

  • 이한영
    • Tribology and Lubricants
    • /
    • v.13 no.2
    • /
    • pp.39-45
    • /
    • 1997
  • The shot peening treatment were conducted for improving the strength of rolling contact fatigue of machine element like a gear. This paper was undertaken to analyze the influence of shot peening treatment for inner race of ball bearing on the rolling contact fatigue. Shot peening treatment were applied to the full hardened and the carbonitrided bearing. And the rolling contact fatigue life test and X-ray diffraction test were carried out. The results of this study showed that the fatigue life of ball bearing in the clean and the contaminated oil could be improved by shot peening treatment. This effect was found to be more pronounced to the full hardened bearing. These facts might be due to the generation of compressive residual stress and the strain hardening of surface layer by shot peening treatment. The failure of the shot peened bearing were presumed to initiate at surface.

CFD-Based Flow Analysis of Rolling Elements in Water-Lubricated Ball Bearings (CFD를 이용한 수윤활 볼베어링의 구름 요소 주위의 마찰 토크분석)

  • Jo, Jun Hyeon;Kim, Choong Hyun
    • Tribology and Lubricants
    • /
    • v.29 no.4
    • /
    • pp.218-222
    • /
    • 2013
  • Water-lubricated ball bearings consist of rolling elements, an inner raceway, an outer raceway, a retainer, and an operating lubricant. In the water environment, ball bearings are required to sustain high loads at high speeds under poorly lubricated conditions. For the analysis of bearing behavior, friction torque is considered as the main factor at various flow rates, rotating speeds, and roughnesses between the rolling element and raceways. When the bearing operates at high rotating speeds, the friction torque between the raceway and rolling elements increases considerably. This frictional torque is an important factor affecting bearing reliability and life cycle duration. For understanding the flow conditions in the inner part of the bearing, this study focuses on the flow around the rotating and revolving rolling elements. A simple model of fluid flow inside the ball bearing is designed using the commercial CFD program ANSYS.

Mass-production of WS$_2$ Solid Lubricant and Its applications (WS$_2$ 고체윤활제의 양산 및 적용)

  • 신동우;최인혁;윤대현;김경도
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1998.10a
    • /
    • pp.221-226
    • /
    • 1998
  • The processing conditions for the mass production of platelet WS$_2$ lubricant powder were optimized. The mixture of tungsten and sulfur powders was sealed in a vacuum of 10$^{-3}$ torr and heat-treated at 850$\circ$C for 2 h. The internal pressure of reaction chamber was maintained at certain level by controlling the release valve automatically. The reaction product was the platelet WS$_2$ powder with an average size of 15 $\mu$m. The synthesized WS$_2$ powder was then coated on the wiper-blade of automobiles and the commercial deep-grooved ball bearing using wet and dry coating methods, respectively. High lubricity and wear resistance of wet coated wiper-blade were confirmed by the life test of 70,000 cycles. The life-time of the ball bearing assembled after WS$_2$ coating onto each part increased 50 times compared to the non-coated ball bearing.

  • PDF

Genetic Algorithm Based Design of Beep Groove Ball Bearing for High-Load Capacity (유전자 알고리즘을 이용한 깊은 홈 볼 베어링의 고부하용량 설계)

  • 윤기찬;조영석;최동훈
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.167-173
    • /
    • 1999
  • This paper suggests a method to design the deep groove ball bearing for high-load capacity by using a genetic algorithm. The design problem of ball bearings is a typical discrete/continuous optimization problem because the deep groove ball bearing has discrete variables, such as ball size and number of balls. Thus, a genetic algorithm is employed to find the optimum values from a set of discrete design variables. The ranking process is proposed to effectively deal with the constraints in genetic algorithm. Results obtained fer several 63 series deep groove ball bearings demonstrated the effectiveness of the proposed design methodology by showing that the average basic dynamic capacities of optimally designed bearings increase about 9~34% compared with the standard ones.

  • PDF