• Title/Summary/Keyword: Ball Type

Search Result 633, Processing Time 0.036 seconds

Structure and Magnetic Properties on Synthesis Route of Co2Z-type Barium Hexaferrite (Co2Z-type Barium Hexaferrite의 합성방법에 따른 결정구조 및 자기적 특성)

  • Baek, In Seung;Nam, In Tak
    • Journal of the Korean Magnetics Society
    • /
    • v.24 no.1
    • /
    • pp.1-10
    • /
    • 2014
  • $Co_2Z$-type barium ferrites ($Ba_3Co_2Fe_{24}O_{41}$) were synthesized using variation method. First, M-type, $Co_2Y$-type and $Co_2Z$-type synthesized by hydrothermal method. Second, M- and Y-type precursors for synthesis of $Co_2Z$ hexaferrite by hydrothermal and ball milling method. the morphology, structure and magnetic properties of the barium ferrite particles were characterized using XRD, FESEM, VSM, impedance. As a result, Single phase of M-type and $Co_2Y$-type were obtained. Manufactured powders of M+Y ball milling, M+Y hydrothermal were similar to single phase of $Co_2Z$-type hexaferrite, all powders were obtained theoretical magnetization (50 emu/g). The largest initial permeability were obtained $Co_2Z$ hexaferrite synthesized by reagent precusor, With increasing calcination temperature was lowered the initial permeability. In another synthesis didn't almost that little change could be found.

Classification of Elderly Men's Sole from the 2D Scanning Method

  • Kim, Nam Soon;Do, Wol Hee
    • Fashion & Textile Research Journal
    • /
    • v.15 no.3
    • /
    • pp.414-422
    • /
    • 2013
  • This study identifies the foot shapes of elderly men by classifying foot types according to the shapes of sole of foot and analyzing individual characteristics. The subjects were 269 elderly men over 60 years of age. Their right feet were measured indirectly with a 2D scanner. The anthropometric measuring items consisted of 38 items that were estimated on the right foot of each subject. The 2D scan data were analyzed by various statistical methods such as factor analysis, ANOVA and cluster analysis using the statistical program SPSS 19.0. A total of 8 factors were extracted through a factor analysis and these factors represent 77.83% of total variance. The 8 factors were: ball and lateral foot protrusion, ball gradient, medial foot protrusion, anterior and posterior foot length ratio, lateral ball length, heel size, toes breadth, and foot length, that explained 77.83% of the total variance. A total of 4 clusters (as their sole type) were categorized using 8 factor scores by cluster analysis. Type 1 was classified as H-type(toes width, foot width, heel width uniform and medial malleolus and lateral malleolus almost no protrusion). Type 2 was classified as V-type(foot width and toes width, wide and heel width narrow). Type 3 was classified as A-type(foot width and heel width, wide but toes width narrow, protruded inside). Type 4 was classified as D-type(protruded outside).

Breeding of Garden Chrysanthemum Cultivar 'Nuri Ball' (Dendranthema grandiflorum Ramat.) with White Color Petals and Semi-Decorative Type Characteristics (흰색 반겹꽃의 화단국화 '누리볼' 육성)

  • Kim, Dong Chan;Choi, Hyun Gu;Pak, Ha Seung;Lee, Young Hye;Won, Mikyung;Jung, Yun Kyung;Lee, Jung-Soo
    • Horticultural Science & Technology
    • /
    • v.33 no.5
    • /
    • pp.789-795
    • /
    • 2015
  • The new garden chrysanthemum (Dendranthema grandiflorum Ramat.) cultivar 'Nuri Ball' was developed at Yesan Chrysanthemum Experiment Station of Chungcheongnam-do Agricultural Research and Extension Services in 2011. 'Nuri Ball' was bred through a cross between the '02-145-01' line as the female parent with yellow flower color and '02-04-32' as the male plant with white flower color in 2004. Three years of adaptation trials were conducted from 2006 to 2009 under natural conditions. This study compared the external shape type with that of 'White Miri' and conducted ploidy and RAPD (Random amplified polymorphic DNA) marker analyses. These tests showed that 'Nuri Ball' cultivar has its own characteristics compared with the control 'White Miri'. 'Nuri Ball' was a shrub type variety with semi-double flowers of 4.0 cm in width with white petals. It could produce 1025.2 flowers per plant in autumn. Compared with the control 'White Miri', 'Nuri Ball' was similar in terms of shape and color of flowers, but was different in flower size and number. The natural flowering time of 'Nuri Ball' was late September. It had very vigorous growth and an early budding plant. 'Nuri Ball' was demonstrated to be a new cultivar based on ploidy test and RAPD analysis. 'Nuri Ball' is intended for use as a bed chrysanthemum and expected to contribute to farm incomes in landscaping.

Characteristics of the Powder Type Ag System Insert Metals Made by Ball Milling Method and Brazed Joints (볼 밀링법으로 제조된 브레이징 삽입금속 및 접합 특성)

  • 김광수;이규도;황선효
    • Journal of Welding and Joining
    • /
    • v.20 no.1
    • /
    • pp.47-54
    • /
    • 2002
  • Powder type Ag system insert metals were manufactured by ball milling process. The variables of milling process such as milling media, revolution speed and powder/ball weight ratio were constant except the milling time. The milling times were selected for 24, 48 and 72 hours. The insert metals made by milling process were evaluated by performing scanning electron microscope, x-ray and DSC(differential scanning calorimetry) analysis, and further in terms of wettability test. The selected insert metals that have the good characteristics compared to commercial insert metals were applied to make the brazed joints of the steel/steel and the steel/WC superhard particles. The characterizations of those brazed joints were also conducted by microstructural observations, shear tensile tests and microhardness measurements. The results indicated that milling time of 48 hours for making powder type insert metals was the best condition showing the small amount of oxides residue, low wetting angle and stable microstructure. The brazed joints that applied the 48 hours milled insert metal were very sound condition indicating the shear tensile value of $2.29{\times}102$ MPa and the microhardness of 138VHN. Further, the amount of the porosity was appeared to be lower than that of the commercial insert metals.

Effects of Ball Milling on Sliding Wear Behavior of Ni-Al Intermetallics Coated on Mild Steel through Induction Heating Process (고주파 연소합성 코팅된 Ni-Al계 금속간화합물의 미끄럼 마모 특성에 미치는 볼 밀링의 영향)

  • Lee, Han-Young
    • Tribology and Lubricants
    • /
    • v.34 no.6
    • /
    • pp.284-291
    • /
    • 2018
  • Ball-milling for reactant powders in advance and using an induction heating system for Ni-Al intermetallic coating process are known to enhance the reactivity of combustion synthesis. In this work, the effects of the charging weight ratio of ball to powder in ball-milling for reactant Ni-Al powders and the synthesizing temperature in induction heating on sliding wear behavior of the coating layers are investigated. Sliding wear behavior of the coating layers is examined against a tool steel using a pin-on-disc type sliding wear machine. As results, wear of the coating layer ball-milled without ball was severely worn out at the sliding speed of 2m/s, regardless of the synthesizing temperature in induction heating. However, the wear rate of the coating layers at the sliding speed was remarkably decreased with increasing the charging weight ratio of ball in ball-milling for reactant powders. This can be explained by the fact that the void in the coating layer is disappeared and the coating layer is densified by the ball-milling. The evidence showed that pitting damages were disappeared on the worn surface of ball-milled coating layer. Consequentially, the Ni-Al intermetallic coating layer could have better wear resistance at all sliding speed ranges with the ball-milling for reactant powders in advance.

Ion Migration Characteristics of a High Voltage Rotary Spark Airgap (고전압 회전 스파크 공격간의 이온 이동특성)

  • Moon Jae-Duk;Kim Tai-Hoon;Hwang Deok-hyun
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.54 no.9
    • /
    • pp.427-432
    • /
    • 2005
  • Ion migration characteristics of a rotary spark airgap of high voltage Pulse generator had been investigated. It was considered that the ion migration speed and the ions of the gases(atmosphere gases, $O_2,\;N_2,,\;and\;H_{2}O,\;etc$.) and the charged very fine particles(about $10\~100nm$ size) migrated through the upper stator ball and bottom stator ball of the rotary spark airgap would determined the rise and fall times of the output high voltage pulse. In this paper, a basic study on the ion migration characteristics of the rotary spark airgap between the spark stator ball and the ion-sensing electrode of the proposed high voltage pulse generator have been investigated experimentally. As a result, the three kinds of ion speeds were detected by the ion-sensing electrode installed at the position of the bottom stator ball of the ball type sparkgap high voltage pulse generator. The migration velocities, diameters, masses, charges, numbers of the ions and particles were obtained by experiments and calculations, which, however, would determine the rise and fall times of the output high voltage pulse.

A Study of Separartion Mechanism in Ball Type Bolt Used the Pressure Cartridge (압력카트리지를 이용한 볼타입 볼트 분리현상 연구)

  • Lee, Yeung-Jo;Koo, Song-Hae;Jang, Hong-Bin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.293-296
    • /
    • 2008
  • Most of the guided weapons have been kept and transferred at the launching tube and fired in case of necessity in these day. Launching tube is a kind of case to protect the guided weapons from external environments and conducted as a guide when they are fired. When we attached the guided weapons to launching tube we usually has used explosive bolt. Explosive bolts have been used explosives when they had to be separated. But when they are separated there are some bad effects; a flame, fragments and pyro-shock. Because of these bad effects there are many restriction to use bolt as joining devices to precision guided weapons. To solve these problems, it has been invented ball type bolt. The present work was represented quantitively the margin of separation safty and separation mechanism in ball type bolt to analyse the dynamic separation test. Unlike explosive bolt, ball type bolt is separated without a flame, fragments and pyro-shock. And it also has a good mechanical properties as much as those of explosive bolt.

  • PDF

Particle Morphology Change and Different Experimental Condition Analysis during Composites Fabrication Process by Conventional Ball Mill with Discrete Element Method(DEM) Simulation (전동볼밀을 이용한 금속기반 복합재 제조공정에서 분쇄매체차이에 대한 입자형상변화와 DEM 시뮬레이션 해석)

  • Ichinkhorloo, Batchuluun;Bor, Amgalan;Uyanga, Batjargal;Lee, Jehyun;Choi, Heekyu
    • Korean Journal of Materials Research
    • /
    • v.26 no.11
    • /
    • pp.611-622
    • /
    • 2016
  • Particle morphology change and different experimental condition analysis during composite fabrication process by traditional ball milling with discrete element method (DEM) simulation were investigated. A simulation of the three dimensional motion of balls in a traditional ball mill for research on the grinding mechanism was carried out by DEM simulation. We studied the motion of the balls, the ball behavior energy and velocity; the forces acting on the balls were calculated using traditional ball milling as simulated by DEM. The effect of the operational variables such as the rotational speed, ball material and size on the flow velocity, collision force and total impact energy were analyzed. The results showed that increased rotation speed with interaction impact energy between balls and balls, balls and pots and walls and balls. The rotation speed increases with an increase of the impact energy. Experiments were conducted to quantify the grinding performance under the same conditions. Furthermore, the results showed that ball motion affects the particle morphology, which changed from irregular type to plate type with increasing rotation speed. The evolution was also found to depend on the impact energy increase of the grinding media. These findings are useful to understand and optimize the particle motion and grinding behavior of traditional ball mills.

Design and Analysis of Mixture Experiments for Ball Mix Selection in the Ball Milling (볼밀링에서 볼 배합비 선택을 위한 혼합물 실험계획 및 분석)

  • Kim, Seong-Jun;Choi, Jai Young;Shin, Hyunho
    • Journal of Korean Society for Quality Management
    • /
    • v.42 no.4
    • /
    • pp.579-590
    • /
    • 2014
  • Purpose: Ball milling is a popular process for obtaining fine powders in the part and material industry. One of important issues in the ball milling is to produce particles with a uniform size. Although many factors affect uniformity of particles, this paper focuses on the choice of ball diameter. Consider a ball milling where balls can be taken with three different diameters. The purpose of this paper is to find a ball mix which minimizes the average particle size. Methods: Ball diameters are selected as 10mm, 3mm, and 0.5mm. In order to find an optimum mixing ratio, the method of mixture experiments is employed in this paper. Taguchi's signal-to-noise ratio (SNR) for smaller-the-better type is also used to analyze experimental data. Results: According to the experimental result, SNR is maximized when the ball mix is taken as either 7:3:0 or 6:4:0. Such mixing ratios can be technically validated in terms of porosity reduction. Conclusion: The ball mixing technique presented in this paper provides a useful way to improve the production efficiency with a low cost.