• 제목/요약/키워드: Ball Position

검색결과 271건 처리시간 0.026초

볼빔에 대한 비선형 제어기 및 관측기 설계 (Nonlinear Controller and Observer Design for Ball and Beam)

  • 임규만
    • 융합신호처리학회 학술대회논문집
    • /
    • 한국신호처리시스템학회 2001년도 하계 학술대회 논문집(KISPS SUMMER CONFERENCE 2001
    • /
    • pp.125-128
    • /
    • 2001
  • In this paper, We proposed the nonlinear controller and observer design for a ball and beam system. Unfortunately, for the ball and beam system, the control coefficient is zero whenever the angular velocity or ball position are zero. Therefore, the relative degree of the ball and beam system is not well defined. The presented the nonlinear controller and observer design is based on the approximation input-output feedback linearization. And we verified that the proposed nonlinear controller and observer scheme is the feasible through a computer simulation.

  • PDF

볼엔드밀가공에 의한 구면형상의 가공특성 (Machining Characteristics of Hemisphere Shape by Ball Endmilling)

  • 왕덕현;김원일;이윤경
    • 한국기계가공학회지
    • /
    • 제1권1호
    • /
    • pp.5-14
    • /
    • 2002
  • Hemisphere shapes were machined for different tool paths and machining conditions with ball endmill cutters. It was also found out how feedrate affect the precision of the machining and also tried to study the most suitable feedrate in specific cutting condition. Tool deflection, cutting forces and shape accuracy were measured according to the inclination position of the sculptured surface. As the decreasing of inclination position angle, the tool deflection was increased due to the decreased cutting speed when the cutting edge is approaching toward the center. Tool deflection when upward cutting IS obtained less than that of downward cutting and down-milling in upward cutting showed the least tool deflection for the sculptured surface. For down-milling, the cutting resistance of the side wall direction is larger than that of feed direction. It was found that the tool deflection is getting better as tool path is going to far from the center for convex surface.

  • PDF

Waviness가 있는 볼베어링으로 지지된 회전계의 동특성해석 (I) -진동 해석- (Dynamic Analysis of a Rotating System Due to the Effect of Ball Bearing Waviness (I)-Vibration Analysis-)

  • 정성원;장건희
    • 대한기계학회논문집A
    • /
    • 제26권12호
    • /
    • pp.2636-2646
    • /
    • 2002
  • This research presents an analytical model to investigate vibration due to ball bearing waviness in a rotating system supported by two or more ball bearings, taking account of the centrifugal force and gyroscopic moment of the ball. The waviness of rolling elements is modeled by the sinusoidal function, and it is incorporated into the position vectors of the race curvature center. The Hertzian con tact theory is applied to calculate the elastic deflection and nonlinear contact force while the rotor has translational and angular motions. Both the centrifugal force and gyroscopic moment of the ball and the waviness of the rolling elements are included in the kinematic constraints and force equilibrium equations of a ball to derive the nonlinear governing equations of the rotor, which are solved by using the Runge-Kutta-Fehlberg algorithm to determine the new position of the rotor. The proposed model is validated by the comparison of the results of the prior researchers. This research shows that the centrifugal force and gyroscopic moment of the ball plays the important role in determining the bearing frequencies, i.e. the principal frequencies, their harmonics and the sideband frequencies resulting from the waviness of the rolling elements of ball bearing. It also shows that the bearing vibration frequencies are generated by the waviness interaction not only between the rolling elements of one ball bearing but also between those of two or more ball bearings constrained by the rotor.

Kinematic Calibration of a Cartesian Parallel Manipulator

  • Kim, Han-Sung
    • International Journal of Control, Automation, and Systems
    • /
    • 제3권3호
    • /
    • pp.453-460
    • /
    • 2005
  • In this paper, a prototype Cartesian Parallel Manipulator (CPM) is demonstrated, in which a moving platform is connected to a fixed frame by three PRRR limbs. Due to the orthogonal arrangement of the three prismatic joints, it behaves like a conventional X-Y-Z Cartesian robot. However, because all the linear actuators are mounted at the fixed frame, the manipulator may be suitable for applications requiring high speed and accuracy. Using a geometric method and the practical assumption that three revolute joint axes in each limb are parallel to one another, a simple forward kinematics for an actual model is derived, which is expressed in terms of a set of linear equations. Based on the error model, two calibration methods using full position and length measurements are developed. It is shown that for a full position measurement, the solution for the calibration can be obtained analytically. However, since a ball-bar is less expensive and sufficiently accurate for calibration, the kinematic calibration experiment on the prototype machine is performed by using a ball-bar. The effectiveness of the kinematic calibration method with a ball-bar is verified through the well­known circular test.

골프공 궤적을 검출하기 위한 고속 영상 시스템 개발 (Development of vision system for the detection of golf ball spin)

  • 매흐다드 아마디;로으샤나크 하지 하사니;김동현;이지연;고국원
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2015년도 추계학술발표대회
    • /
    • pp.1073-1075
    • /
    • 2015
  • In this paper vision based system for detection of golf ball position and spin velocity in screen golf game is introduced. Firstly, an algorithm is presented for finding ball position and its initial linear velocity on the golf court, and secondly, golf ball spin is calculated. These parameters are vital for simulator in order to simulate a real golf environment. Finally, these algorithm have been implemented with acceptable result.

비선형 동적마찰을 갖는 XY볼-스크류 구동계에 대한 위치 추종제어 (Position Tracking Control on the XY Ball-screw Drive System with the Nonlinear Dynamic Friction)

  • 한성익
    • 한국정밀공학회지
    • /
    • 제19권6호
    • /
    • pp.51-61
    • /
    • 2002
  • A tracking control scheme on the XY ball-screw drive system in the presence of nonlinear dynamic friction is proposed. A nonlinear dynamic friction is regarded as the Lund-Grenoble friction model to compensate effects of friction. The conventional VSC method that often has been used as a non-model-based friction controller has poor tracking performance in high-precision position tracking application since it cannot compensate the friction effect below a certain precision level completely. Thus to improve the precise position tracking performance, we propose the integral type VSC method combined with the friction-model-based observer. Then this control scheme has the high precise tracking performance compared with the non-model-baked VSC method and the PID control method with a similar observer. This fact is shown through the experiment on the XY ball-screw drive system with the nonlinear dynamic friction.

Changes of abdominal muscle activity according to trunk stabilization exercises using a Swiss ball

  • Lee, Suk Min;Lim, Hee Sung;Byun, Hyo Jin;Kim, Myung Joon
    • Physical Therapy Rehabilitation Science
    • /
    • 제9권1호
    • /
    • pp.18-24
    • /
    • 2020
  • Objective: The purpose of this study was to compare the activities of the abdominal muscles according to trunk stabilization exercises using Swiss ball in normal individuals. Design: Cross-sectional study. Methods: Ten healthy university students participated in this study. The subjects were required to complete the following three exercise positions: Exercise position 1, sitting on a Swiss ball and lifting the legs; Exercise position 2, pushing to a plank position from an ending position; and Exercise position 3, push-up posture with the legs on a Swiss ball. Changes in the trunk muscle activities were estimated using Biometric electromyography (EMG). Activities of the dominant side internal oblique muscle (IOM) and external oblique muscle (EOM) were estimated in all participants. The maximal voluntary isometric contraction (MVIC %) was measured to standardize the EMG signals for the IOM and EOM during maximum resistance when sitting up with each shoulder pointing towards the contralateral pelvis with knees bent and both arms crossed on the chest for 5 seconds. Results: There was a significant difference in the activity of the internal and external oblique muscles between Exercises 1 and 2 and Exercises 1 and 3 (p<0.05). Furthermore, the IOM/EOM activity ratio was the greatest during Exercise 3 and the smallest during Exercise 1. IOM and EOM activities were the greatest during Exercise 2 with greater EOM activity. Conclusions: In future studies, it will be necessary to investigate muscle activities by supplementing the above-mentioned limitations during the stabilization exercise. The results of this study may be used as a basis for controlling the intensity and frequency of exercise while prescribing trunk stabilization exercises.

레이저를 이용한 볼나사 리드오차 측정에 관한 연구

  • 윤영식;박철우;이상조
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1994년도 추계학술대회 논문집
    • /
    • pp.254-259
    • /
    • 1994
  • Recently, the precision ball screw becomes the essence of the high-precision industries and is playing a key role in the positioning devices. The standard and definition of pitch error in a precision ball screw is specified by KS, JIS or ISO. However, the method of measuring the pitch error is not concrete. In this study. laser measurement system(LMS) with a laser position transducer and a machine-tools is developed. In order to verify the stability of the LMS, several experiments with the standard ball screw is performed.

  • PDF

홀 센서와 포토 센서를 이용하는 선형 스테이지에서 위치결정 비교 실험 (The Position Decision Comparison Experiment of Hall and Photo Sensors in the Linear Stage)

  • 차영엽
    • 제어로봇시스템학회논문지
    • /
    • 제21권2호
    • /
    • pp.157-161
    • /
    • 2015
  • For machining systems having a high precision positioning with a long stroke, it is necessary to examine the repeatability of reference position decisions. Though ball-screw driven linear stages equipped with encoders have high precision feed drivers and a long stroke, they have some limitations for reference position decisions if they have not been equipped accurate home sensors. High precision machining technology has become one of the most important aspects of the development of a precision machine. Such a machine requires high precision positioning as well as high speed on a large workspace. This study is performed to experimentally compare the repeatability for home position decisions in the case of photo sensors and hall sensors as a home switch of the ball-screw driven linear stage.

볼빔 시스템에 대한 입자 군집 최적화를 이용한 최적 퍼지 직렬형 제어기 설계 (Design of Optimized Fuzzy Cascade controller Based on Partical Swarm Optimization for Ball & Beam System)

  • 장한종;오성권
    • 전기학회논문지
    • /
    • 제57권12호
    • /
    • pp.2322-2329
    • /
    • 2008
  • In this study, we introduce the design methodology of an optimized fuzzy cascade controller with the aid of particle swarm optimization(PSO) for ball & beam system. The ball & beam system consists of servo motor, beam and ball, and remains mutually connected in line in itself. The ball & beam system determines the position of ball through the control of a servo motor. We introduce the fuzzy cascade controller scheme which consists of the outer(1st) controller and the inner(2nd) controller as two cascaded fuzzy controllers, and auto-tune the control parameters(scaling facrors) of each fuzzy controller using PSO. For a detailed comparative analysis from the viewpoint of the performance results and the design methodology, the proposed method for the ball & beam system which is realized by the fuzzy cascade controller based on PSO, is presented in comparison with the conventional PD cascade controller based on serial genetic alogritms.