• 제목/요약/키워드: Balcony Window

검색결과 50건 처리시간 0.021초

대학주변 원룸형 다가구주택의 소음측정평가 (Evaluation on Noise Level of One-Room Type Multi-Family Housing Around Campus)

  • 최윤정
    • 한국주거학회:학술대회논문집
    • /
    • 한국주거학회 2003년도 정기총회 및 추계학술대회
    • /
    • pp.95-100
    • /
    • 2003
  • The purpose of this study is to evaluate the noise environment of one-room type multi-family housing around the campus. The field measurements on equivalent noise level of indoor and outdoor were carried out in 6 subject house units during the 26th${\sim}$28th of November 2002. The results are as follows. 1) Outdoor noise levels of 6 subject buildings were distributed 52.8${\sim}$65.3dB(A) and were inappropriate to the standard for environmental noise, 55dB(A). 2) Indoor noise level of 6 subject house units were measured 27.5${\sim}$63.5dB(A). These values were higher than the indoor noise standard (40dB(A)) except subject house D(average 37.6dB(A)). 3) It was found that the differences of indoor noise levels between subject house units were caused by resident's living factor, characteristics of window, and existence of balcony.

  • PDF

공동주택 스마트 외피 시스템의 양중 팔레트 개발에 관한 연구 (A Study on the Development of the Lifting Palette in the Smart Skin System of Apartment Housing)

  • 이현정;박문선;안용한
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2018년도 추계 학술논문 발표대회
    • /
    • pp.145-146
    • /
    • 2018
  • This study was performed to develop the lifting pallets for the application of smart skin system when remodeling the balcony of apartment house. For this purpose, the smart skin system based on IoT, combining window, BIPV, ESS, air purifier applied in this study was examined. The study developed and presented a foldable double pallet considering the load (about 2Ton) and specification (width 7m × height 2.6m × width 1.3m) of the smart skin system. In future research, it is necessary to verify the application of the foldable pallet in this study.

  • PDF

브랜드 아파트의 주동 입면 디자인에 대한 소비자들의 선호도에 관한 연구 (A Study on the Preference of Consumers for facade Design with Brand Concepts in Apartments)

  • 전한종
    • 한국실내디자인학회논문집
    • /
    • 제15권3호
    • /
    • pp.111-117
    • /
    • 2006
  • In the recent years, domestic construction companies have tried to differentiate their apartments using brand positioning. Respective construction companies are attracting public attention with discriminative brands. This study investigated residents' preferences focusing on apartments facade design used in marketing strategy of brand apartments. Four concepts in surveyed brand apartments are deluxe, modern, eco-friendly and comfortable. According to the related study on design factor of apartment facade, the design factors are chosen such as the overall building shape, balcony form, main color, exterior wall shape, material, main access shape, pent house design and window size. As a result of analysis, there was a difference between brand concepts and consumers' views. Therefore, apartment facade design to differentiate their own companies' brand images should consider the perception of customers.

주거건물용 이중외피 시스템의 블라인드 조절에 따른 에너지 성능평가에 관한 연구 (Energy Performance Evaluation of a Double-skin Facade with a Venetian Blind in Residential Buildings)

  • 이소연;강재식;김강수
    • 한국태양에너지학회 논문집
    • /
    • 제30권6호
    • /
    • pp.1-9
    • /
    • 2010
  • Apartment balcony has been remodeled since the government permitted remodeling in January 2006.But extended balcony has great impact on building heat gain and loss. Therefore It has problems such as increase of heating and cooling energy. So $\underline{t}echnical$ solutions about window solar gain in summer is an urgent matter. The Purpose of this study is to evaluate energy performance of a blind in a double-skin facade in residential buildings by using EnergyPlus program. The results show that slat angles of $90^{\circ}$ is best in energy performance if we do not consider daylight. Poorly daylighted living room needs electric light and it also causes high cooling load. On the other hand, the results show that the application of blinds controlled automatically is best for energy performance when we consider daylight. Blind slat angles of $50\sim60^{\circ}$ have best performance when blinds are controlled in this angle throughout the day on a clear day in August. Blind slat angles of $0\sim30^{\circ}$ have best performance when blinds $\underline{are\;controlled}$ in this angle throughout the day on a cloudy day (more than 7 of total sky cover) in August.

창호에 SHGC를 반영한 공동주택의 방위각별 에너지 효율성 평가를 통한 합리적인 창호 계획 방안 연구 (A Study on the optimized Performance Designing of the Window of the Apartment based on the Annual Energy Demand Analysis according to the Azimuth Angle applying the Solar Heat Gain Coefficient of the Window)

  • 이장범
    • 대한건축학회논문집:계획계
    • /
    • 제35권11호
    • /
    • pp.25-34
    • /
    • 2019
  • It is important to design windows in a reasonable way considering the performance characteristics of the elements of the window rather than just to increase the thermal energy performance of the window. In this study, the Heat-transfer Coefficient as insulation performance of the windows and together with the grade of the glass's SHGC (Solar Heat Gain Coefficient) were analyzed to relate to the energy efficiency performance of the building by azimuth angle. Based on this basic study, the Heat-transfer Coefficient of windows and the SHGC rating of glass were applied to the unit plan of apartment building, and the Heating and Cooling Demand were analyzed by azimuth angle. Apartment plan types were divided into 2 types of Non-extension and extension of balcony. The designPH analysis data derived from the variant of the Heat-transfer Coefficient and SHGC, were put into PHPP(Passive House Planning Package) to analyze precisely the energy efficiency(Heating and Cooling Demands) of the building by azimuth angle. In addition, assuming the 'ㅁ' shape layout, energy efficiency performance and potential of PV Panel installation also were analyzed by floors and azimuth angle, reflecting the shading effects by surrounding buildings. As the results of the study, the effect of Heat Gain by SHGC was greater than Heat Loss due to the Heat-transfer Coefficient. So it is more effective to increase SHGC to satisfy the same Heating Demand, and increasing SHGC made possible to design windows with low Heat-transfer Coefficient. It was also revealed that the difference in annual Heating and Cooling Demands between the low, mid and high floor households is significantly high. In addition to it, the installation of PV Panel in the form of a shading canopy over the window reduces the Cooling Load while at the same time producing electricity, and also confirmed that absolute thermal energy efficiency could not be maximized without controlling the thermal bridge and ventilation problems as important heat loss factors.

안동문화권(安東文化圈) 뜰집의 '직교(直交)도리' 구조(構造)에 관한 연구(硏究) (A Study on the 'Perpendicular crossing Dori(Purlin)' Structure of the Ddeulzip(Courthouse) in Andong Cultural Area)

  • 김화봉
    • 건축역사연구
    • /
    • 제9권2호
    • /
    • pp.7-17
    • /
    • 2000
  • The purpose of this study is the analysis of 'perpendicular crossing Dori' with a structural character of Ddeulzip in Andong cultural area. There are many structural methods to solve the problems of Ddeuljip which is connected space in the rectangular type. There are 'Slope Base', 'Woosangak' roof, 'Seosangak' roof, and '4 beam roof framing' Moreover, they have been used 'perpendicular crossing Dori'. Its characters are as follows ; 1. The 'perpendicular crossing Dori' structure is occurred in different depth of width and length space of 'ㄱ' typed plan. At that time the beam of width is crossed in the middle of the beam of length without the order under them. 2. The 'perpendicular crossing Dori' structure is the method of free depth of width in regular distance of column which is different from general usage of balcony order. 3. The 'perpendicular crossing Dori' structure is founded north-western area of Andong Cultural Area(Bonghwa, Andong, Youngju, and Yeacheun). The best old sample was in Andong(16C) and the next is Yeacheun(17C) and the last is Bonghwa(18C). 4. The frequency in use of roof type of 'perpendicular crossing Dori' structure is 64% of 'Seosangak' and 36% of 'Woosangak'. The sample of 'Woosangak' house of 'perpendicular crossing Dori' structure is concentrated in Bonghwa. 5. The best merit of the 'perpendicular crossing Dori' structure is usage of double swing window in front of Anbang, It is the spacial success which overcomes the structural limits. And it is the structural rationality.

  • PDF

철근콘크리트 구조 공동주택 실물화재 실험 연구 -화재성상 파악 및 취약부위 도출을 중심으로- (Full Scale Experiment of Fire Phenomena in case of Reinforced Concrete Structured Apartment Building -Regarding the enclosure fire growth and the structural fire vulnerability findings-)

  • 윤명오
    • 한국화재소방학회논문지
    • /
    • 제10권3호
    • /
    • pp.41-50
    • /
    • 1996
  • 선진 각국에서는 방화안전의 구현과 소방기술의 발전을 위하여 화재실험을 통하여 화재현상을 관측, 공학적으로 파악하려는 노력을 경주하여 왔다. 실물화재 실험은, 건축 공간의 안전을 확보하기 위한 공법개발과, 계획방법의 발전, 소화시스템 성능 기준의 결정을 위하여 시행되어 왔다. 본 연구에서는 국내거주상황을 대표하는 공동주택을 대상으로 실물화재 실험을 시도하여, 실험기술 자체를 확보함과 동시에, 공간화재예측에 요구되는 기초데이터를 획득하고, 취약부위를 도출하므로써 소기의 결과를 이끌어 내었다.

  • PDF

공동주택 발코니창에 설치된 가동단열 시스템의 열성능 평가 (Thermal Performance Evaluation of Movable Insulation System in Apartments)

  • 윤종호;김병수
    • 한국태양에너지학회 논문집
    • /
    • 제28권5호
    • /
    • pp.28-35
    • /
    • 2008
  • The aim of this study was to analysis the Heating/cooling performance of movable insulation system built in apartments. The process of this study is as follows: 1) Test-cells of movable insulation are designed through the investigation of previous paper and work. The type of the movable insulation used in test-cell is low emissivity(5%) insulation, measured for heating season and the thermal effects are analyzed. 2) The simulation program(Design Builder) was used in energy performance analysis. the reference model of simulation was made up to analysis energy performance on movable insulation system. 3) Selected reference model(Floors:15, Area of Unit:115.5$m^2$) for heating/cooling energy analysis, Energy performance simulation with various variants, such as slate angle of movable insulation(5$^{\circ}$, 30$^{\circ}$, 50$^{\circ}$) and position of movable insulation. Consequently, When movable insulation system is equipped with balcony window of Apartment, Annual heating energy of reference model was cut down at the average of 5.4kWh/$m^2$ or 4.6% of heating/cooling energy.

공동주택용 태양열 급탕시스템 최적공급 방안 해석연구 (Optimal Supply Scheme of Solar Hot Water Heating Systems for the Apartment Complexes)

  • 이철성;박재성;박재완;신우철;윤종호
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2008년도 추계학술발표대회 논문집
    • /
    • pp.245-250
    • /
    • 2008
  • This study is on the availability of solar thermal energy in Korean high-rise apartment complex depending on the installation type of solar collectors to roof or facade of building. Firstly, solar access evaluation on the roof and the facade of apartment buildings was carried out. The total thermal load of each apartment unit and building was investigated and matched with the energy which was produced by solar thermal systems on the facade. The considered layout patterns of apartment buildings were '一type', 'alternative 一type', 'ㄱtype' and 'ㅁtype' and that was analyzed in prior studies. Extensive dynamic hourly energy simulations with the solar thermal system were Performed with the TRNSYS of SEL. We assumed that the apartment complex is composed of 9 buildings and located in Daejeon. The collectors are the heat-pip evacuated tube collectors and the number of collectors are 45 tubes We assumed that the collectors are installed on the balcony of each unit and the angle of incilnation is $90^{\circ}$. As a result, the supply amount of solar thermal systems is about 4,850,086kJ/hr and the solar fraction is about 66%. The solar fraction according to each azimuth is about 66% on the south, 62% on the south-east $30^{\circ}$ and 56% on the south-east $60^{\circ}$. So, we quantitatively got a line on the optimal azimuth for installing the solar thermal systems. The solar fraction has differences from 5% to 15% of each floor, 6th, 12th and 20th and those tendencies are same in analyzed each 4 types of the apartment complexes.

  • PDF

대학주변 원룸형 다가구주택의 실내소음수준 실태 (Present Condition of Indoor Noise Level in One-Room Type Multi-Family Housings around Campus)

  • 최윤정
    • 한국실내디자인학회논문집
    • /
    • 제14권3호
    • /
    • pp.191-198
    • /
    • 2005
  • The present study is a preliminary research improving the dwelling quality of one-room type multi-family housings around the university campus. The purpose of the study is to investigate the present condition of Indoor noise level using · residents' responses and field measurements. The respondents are 104 residents living in one-room type multi-family housings. The field measurements on equivalent noise level of indoor and outdoor were carried out in 6 subject house units during the $26th\~28th$ of November 2002. The results are as follows. 1) The residents show relatively non-positive responses at evening and night on the present condition of indoor noise. 2) They answer 'living equipment foise' and 'water hammer' as major types of indoor noise of house unit. 3) Outdoor noise levels, basic factor of noise environment in 6 subject buildings were distributed $52.8\~65.3dB(A)Leq_{5min}$ and were inappropriate to the standard for environmental noise, $55 dB(A)Leq_{5min}$. 4) Indoor noise levels of subject house units were measured as $27.5\~63.5dB(A)Leq_{5min}$, the average of each house unit except one house unit was higher than the level feeling as noise, 40dB(A). 5) It was found that the differences of indoor noise levels between subject house units were caused by 'residents' living noise', 'living equipment noise', 'water hammer', and 'walking and talking noise in stairs and corridors'. 6) Therefore, it is required to plan for improving the quality of noise environment in one-room type multi-family housing around the campus. For example, soundproof construction (including double window with pair glass and balcony), outdoor garden with trees and water for increasing natural sound, interior materials with sound absorbing power to absorb living noise, soundproof pipe or double surface pipe for decreasing 'water hammer', and noiseproof floors, etc. are required.