• 제목/요약/키워드: Balancing and position control

검색결과 45건 처리시간 0.023초

Robust Indirect Adaptive Fuzzy Controller for Balancing and Position Control of Inverted Pendulum System

  • Kim Yong-Tae;Kim Dong-Yon;Yoo Jae-Ha
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제6권2호
    • /
    • pp.155-160
    • /
    • 2006
  • In the paper a robust indirect adaptive fuzzy controller is proposed for balancing and position control of the inverted pendulum system. Because balancing control rules of the pendulum and position control rules of the cart can be opposite, it is difficult to design an adaptive fuzzy controller that satisfy both objectives. To stabilize the pendulum at a specified position, the proposed fuzzy controller consists of a robust indirect adaptive fuzzy controller for balancing and a supervisory fuzzy controller which emulates heuristic control strategy and arbitrate two control objectives. It is proved that the signals in the overall system are bounded. Simulation results are given to verify the proposed adaptive fuzzy control method.

계층적 적응 퍼지제어기법을 사용한 역진자시스템의 안정화 및 위치제어 (Balancing and Position Control of Inverted Pendulum System Using Hierarchical Adaptive Fuzzy Controller)

  • Kim, Yong-Tae;Lee, Hee-Jin;Kim, Dong-Yon
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2004년도 춘계학술대회 학술발표 논문집 제14권 제1호
    • /
    • pp.164-167
    • /
    • 2004
  • In the paper is proposed a hierarchical adaptive fuzzy controller for balancing and position control of the inverted pendulum system. Because balancing control rules of the pendulum and position control rules of the cart can be opposite, it is difficult to design an adaptive fuzzy controller that satisfy both objectives. To stabilize the pendulum at a specified position, the hierarchical adaptive fuzzy controller consists of a robust indirect adaptive fuzzy controller for balancing, a forced disturbance generator which emulates heuristic control strategy, and a supervisory decision maker for the arbitration of two control objectives It is proved that all the signals in the overall system are bounded. Simulation results are given to verify the proposed adapt i ye fuzzy control method.

  • PDF

이륜 구동 로봇의 균형 각도 조절을 통한 사람과의 상호 제어의 실험적 연구 (Experimental Studies of Balancing Control of a Two-wheel Mobile Robot for Human Interaction by Angle Modification)

  • 이승준;정슬
    • 로봇학회논문지
    • /
    • 제8권2호
    • /
    • pp.67-74
    • /
    • 2013
  • This paper presents interaction force control between a balancing robot and a human operator. The balancing robot has two wheels to generate movements on the plane. Since the balancing robot is based on position control, the robot tries to maintain a desired angle to be zero when an external force is applied. This leads to the instability of the system. Thus a hybrid force control method is employed to react the external force from the operator to guide the balancing robot to the desired position by a human operator. Therefore, when an operator applies a force to the robot, desired balancing angles should be modified to maintain stable balance. To maintain stable balance under an external force, suitable desired balancing angles are determined along with force magnitudes applied by the operator through experimental studies. Experimental studies confirm the functionality of the proposed method.

슬라이딩 메커니즘을 이용한 서비스 로봇의 밸런싱 자세의 안정화에 대한 실험연구 (An Experimental Study on Balancing Stabilization of a Service Robot by Using Sliding Mechanism)

  • 이승준;정슬
    • 제어로봇시스템학회논문지
    • /
    • 제19권3호
    • /
    • pp.233-239
    • /
    • 2013
  • This paper presents the analysis and control of the position of the COG (Center of Gravity) for a two-wheel balancing robot. The two-wheel balancing robot is required to maintain balance by driving two wheels only. Since the robot is not exactly symmetrical and its dynamics is changing with respect to moving parts, robust balancing control is difficult. Balancing performance becomes difficult when two arms hold a heavy object since the center of gravity is shifted out of the wheel axis. Novel design of a sliding waist mechanism allows the robot to react against the shift of the COG by moving the whole upper body to compensate for the imbalance of the mass as a counter balancer. To relocate the COG position accurately, the COG is analyzed by force data measured from two force sensors. Then the sliding COG mechanism is utilized to control the sliding waist position. Experimental studies are conducted to confirm the proposed design and method.

Experimental Studies of Swing Up and Balancing Control of an Inverted Pendulum System Using Intelligent Algorithms Aimed at Advanced Control Education

  • Ahn, Jaekook;Jung, Seul
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제14권3호
    • /
    • pp.200-208
    • /
    • 2014
  • This paper presents the control of an inverted pendulum system using intelligent algorithms, such as fuzzy logic and neural networks, for advanced control education. The swing up balancing control of the inverted pendulum system was performed using fuzzy logic. Because the switching time from swing to standing motion is important for successful balancing, the fuzzy control method was employed to regulate the energy associated with the angular velocity required for the pendulum to be in an upright position. When the inverted pendulum arrived within a range of angles found experimentally, the control was switched from fuzzy to proportional-integral-derivative control to balance the inverted pendulum. When the pendulum was balancing, a joystick was used to command the desired position for the pendulum to follow. Experimental results demonstrated the performance of the two intelligent control methods.

신경회로망을 이용한 이동로봇 위의 역진자의 각도 및 로봇 위치제어에 대한 연구 (Experimental Studies of Balancing an Inverted Pendulum and Position Control of a Wheeled Drive Mobile Robot Using a Neural Network)

  • 김성수;정슬
    • 제어로봇시스템학회논문지
    • /
    • 제11권10호
    • /
    • pp.888-894
    • /
    • 2005
  • In this paper, experimental studies of balancing a pendulum mounted on a wheeled drive mobile robot and its position control are presented. Main PID controllers are compensated by a neural network. Neural network learning algorithm is embedded on a DSP board and neural network controls the angle of the pendulum and the position of the mobile robot along with PID controllers. Uncertainties in system dynamics are compensated by a neural network in on-line fashion. Experimental results show that the performance of balancing of the pendulum and position tracking of the mobile robot is good.

자기학습 퍼지제어기를 이용한 원형 역진자 시스템의 안정화 및 위치 제어 (Balancing and Position Control of an Circular Inverted Pendulum System Using Self-Learning Fuzzy Controller)

  • 김용태;변증남
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1996년도 추계학술대회 학술발표 논문집
    • /
    • pp.172-175
    • /
    • 1996
  • In the paper is proposed a hierarchical self-learning fuzzy controller for balancing and position control of an circular inverted pendulum system. To stabilize the pendulum at a specified position, the hierarchical fuzzy controller consists of a supervisory controller, a self-learning fuzzy controller, and a forced disturbance generator. Simulation example shows the effectiveness of the proposed method.

  • PDF

Desing of a Controller for Rod Balancing System

  • Kim, Sang-Gyu;An, Jung-Hun;Hong, Sung-Hun;Kang, Mun-Sung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.66.4-66
    • /
    • 2001
  • In this paper we have fabricated the two-dimensional Rod Balancing System which expands conventional one-dimensional inverted pendulum control system and designed its controller. The X-axis cart and Y-axis bar of the Rod Balancing System, which is composed of X-Y table, are actuated through timing belt by each of two geared DC motors, and the rod mounted on a X-axis cart can be brought to the desired position and maintained in a vertical position by motor-control. For the control of the Rod Balancing System, we used a fuzzy logic controller that is an approach to systems control when the exact mathematical model of the plant is unknown or the mathematical model is too complex to understand.

  • PDF

최적제어 기법을 이용한 밸런싱 로봇 제어기의 설계 (Design of Balancing Robot Controller using Optimal Control Method)

  • 여희주;박훈
    • 전자공학회논문지
    • /
    • 제51권2호
    • /
    • pp.190-196
    • /
    • 2014
  • 본 논문에서는 밸런싱 로봇의 동역학적 모델의 해석으로부터 기울기와 조향이 독립되어 있어 서로 영향을 받지 않는 것을 증명하고, 다변수 시스템에 적합한 제어기로써 두 개의 최적 LQR 제어기 구조를 갖는 제어시스템을 제안하였다. 또한 제안한 제어시스템의 성능을 입증하기 위하여 밸런싱 로봇의 자세제어에 적용하여 모의실험과 실험을 수행하였고, PID 제어기와의 비교평가를 통하여 그 우수성을 검증하였다.

이륜 이동로봇의 균형 제어를 위한 시간지연 제어기의 실험 연구 (Experimental Studies of a Time-delayed Controller for Balancing Control of a Two-wheel Mobile Robot)

  • 조성택;정슬
    • 한국지능시스템학회논문지
    • /
    • 제26권1호
    • /
    • pp.23-29
    • /
    • 2016
  • 본 논문에서는 두 바퀴 구동 이동로봇(이륜이동로봇)의 균형제어에 대해 논한다. 이륜이동로봇은 두 바퀴로 구동되며 균형을 유지하면서 목표점으로 이동하는 이동로봇이다. 선형제어기인 PD제어기로 균형을 유지할 수 있지만 강건한 제어를 위해서 비선형제어인 시간지연제어기를 사용하였다. PD제어기와 시간지연 제어기의 성능을 비교하기 위해 이륜이동로봇에 적용하여 실험하였다. 로봇의 각도를 위해 시간지연제어방식, 위치제어를 위한 시간지연제어방식, 그리고 각도와 위치 제어를 위한 시간지연제어 방식 등 3가지로 나누어서 실험을 시행하였다. 제어기의 이득값을 달리하며 실험을 통해 시스템의 성능을 평가하였다.