• 제목/요약/키워드: Balancing Simulation

검색결과 467건 처리시간 0.027초

메쉬 다중프로세서 시스템 환경에서의 부하평형 알고리즘 (A Load Balancing Algorithm for Mesh Multiprocessor Systems)

  • 송의석;오하령;성영락
    • 한국시뮬레이션학회:학술대회논문집
    • /
    • 한국시뮬레이션학회 2003년도 춘계학술대회논문집
    • /
    • pp.85-88
    • /
    • 2003
  • 본 논문에서는 다중 프로세서 시스템에서 부하를 재분배할 때 소요되는 통신비용을 줄이기 위한 알고리즘을 제안한다. 또한 시뮬레이션을 이용하여 제안된 알고리즘의 성능을 기존의 알고리즘과 비교한다. 제안하는 알고리즘에서는 되도록 많은 수의 링크가 부하 평형에 참여 할 수 있도록 한다. 이를 위하여 부하 이동량 계산시에 각 프로세서는 자신과 연결된 모든 링크를 이용하여 부하 평형을 시도한다. 그리고 한 번의 링크를 통해 이동되는 부하 량을 단위 량으로 제한시키는 대신에 반복적인 방법으로 부하 이동량을 계산한다. 시뮬레이션은 8$\times$8, 10$\times$10, 12$\times$12, 14$\times$14, 16$\times$16개의 프로세서를 갖는 메쉬 구조에서 실시하였다. 시뮬레이션 결과 기존의 알고리즘에 비하여 전체 부하 이동량은 약 30%, 부하 이동 시간은 약 70% 감소함을 보였다.

  • PDF

무선 Ad-hoc 망에서 라우팅 에너지 소비의 균형 기법 (Balancing of Routing Energy Consumption in Wireless Ad-hoc Networks)

  • 강용혁;엄영익
    • 한국시뮬레이션학회:학술대회논문집
    • /
    • 한국시뮬레이션학회 2000년도 추계학술대회 논문집
    • /
    • pp.97-101
    • /
    • 2000
  • Energy consumption is considered as a principal ingredient in mobile wireless ad-hoc networks. In such a network, most of mobile nodes takes a role in forwarding messages received from neighbor nodes. Energy of these nodes is consumed in different rates depending on message traffic routes. This paper proposes a scheme to balance routing energy consumption by transferring routing function from node with small residual energy to node with enough residual energy. This scheme requires additional local message transfer, increasing the energy consumption of nodes to transfer routing function, and increasing total energy consumption of ad-hoc network. But balancing of energy consumption make the system lifetime the longer and increase the average node lifetime.

  • PDF

Congestion-Aware Handover in LTE Systems for Load Balancing in Transport Network

  • Marwat, Safdar Nawaz Khan;Meyer, Sven;Weerawardane, Thushara;Goerg, Carmelita
    • ETRI Journal
    • /
    • 제36권5호
    • /
    • pp.761-771
    • /
    • 2014
  • Long-Term Evolution employs a hard handover procedure. To reduce the interruption of data flow, downlink data is forwarded from the serving eNodeB (eNB) to the target eNB during handover. In cellular networks, unbalanced loads may lead to congestion in both the radio network and the backhaul network, resulting in bad end-to-end performance as well as causing unfairness among the users sharing the bottleneck link. This work focuses on congestion in the transport network. Handovers toward less loaded cells can help redistribute the load of the bottleneck link; such a mechanism is known as load balancing. The results show that the introduction of such a handover mechanism into the simulation environment positively influences the system performance. This is because terminals spend more time in the cell; hence, a better reception is offered. The utilization of load balancing can be used to further improve the performance of cellular systems that are experiencing congestion on a bottleneck link due to an uneven load.

Forecasting Load Balancing Method by Prediction Hot Spots in the Shared Web Caching System

  • Jung, Sung-C.;Chong, Kil-T.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.2137-2142
    • /
    • 2003
  • One of the important performance metrics of the World Wide Web is how fast and precise a request from users will be serviced successfully. Shared Web Caching (SWC) is one of the techniques to improve the performance of the network system. In Shared Web Caching Systems, the key issue is on deciding when and where an item is cached, and also how to transfer the correct and reliable information to the users quickly. Such SWC distributes the items to the proxies which have sufficient capacity such as the processing time and the cache sizes. In this study, the Hot Spot Prediction Algorithm (HSPA) has been suggested to improve the consistent hashing algorithm in the point of the load balancing, hit rate with a shorter response time. This method predicts the popular hot spots using a prediction model. The hot spots have been patched to the proper proxies according to the load-balancing algorithm. Also a simulator is developed to utilize the suggested algorithm using PERL language. The computer simulation result proves the performance of the suggested algorithm. The suggested algorithm is tested using the consistent hashing in the point of the load balancing and the hit rate.

  • PDF

Dynamic Load Balancing Algorithm using Execution Time Prediction on Cluster Systems

  • Yoon, Wan-Oh;Jung, Jin-Ha;Park, Sang-Bang
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2002년도 ITC-CSCC -1
    • /
    • pp.176-179
    • /
    • 2002
  • In recent years, an increasing amount of computer network research has focused on the problem of cluster system in order to achieve higher performance and lower cost. The load unbalance is the major defect that reduces performance of a cluster system that uses parallel program in a form of SPMD (Single Program Multiple Data). Also, the load unbalance is a problem of MPP (Massive Parallel Processors), and distributed system. The cluster system is a loosely-coupled distributed system, therefore, it has higher communication overhead than MPP. Dynamic load balancing can solve the load unbalance problem of cluster system and reduce its communication cost. The cluster systems considered in this paper consist of P heterogeneous nodes connected by a switch-based network. The master node can predict the average execution time of tasks for each slave node based on the information from the corresponding slave node. Then, the master node redistributes remaining tasks to each node considering the predicted execution time and the communication overhead for task migration. The proposed dynamic load balancing uses execution time prediction to optimize the task redistribution. The various performance factors such as node number, task number, and communication cost are considered to improve the performance of cluster system. From the simulation results, we verified the effectiveness of the proposed dynamic load balancing algorithm.

  • PDF

외륜 이동로봇의 균형제어 알고리즘 (Balancing Control Algorithm for a Single-Wheeled Mobile Robot)

  • 이현탁;박희재
    • 한국생산제조학회지
    • /
    • 제26권1호
    • /
    • pp.144-149
    • /
    • 2017
  • There have been lots of interest on service and entertainment robots. To ensure that robots work in harmony with humans, their stability and compactness are some of the key issues. Obviously, robots with fewer wheels occupy a smaller floor area compared to those with more wheels. In addition, robots with fewer wheels, whose posture stabilities are maintained by feedback control, are stable even under larger accelerations and/or higher locations of the center of mass. To facilitate controller design, it is assumed that both pitch and roll dynamics are decoupled. The dynamic equations of motion for the proposed robot are derived from the Euler-Lagrange equation. To obtain the optimal balancing control law, linear quadratic regulator control methods are applied to the linearized dynamic equations. Simulation and experimental results verify the effectiveness and performance of the proposed balancing control algorithm for a single-wheeled mobile robot.

오버레이 네트워크에서 멀티미디어 서비스를 위한 적응적인 부하균형 기법 (Adaptive Load Balancing Algorithms for Overlay Multimedia Network)

  • 김승욱;김성천
    • 한국정보과학회논문지:정보통신
    • /
    • 제34권4호
    • /
    • pp.239-245
    • /
    • 2007
  • 셀룰러/랜 기반의 중첩 네트워크는 유선 네트워크에 비해 상대적으로 제한된 대역폭을 가지는 특성으로 인해 효율적인 대역폭 관리에 대한 관심이 증가하고 있다. 본 논문에서는 멀티미디어 중첩 네트워크상에서 트래픽의 이동을 통한 온라인 부하분산 알고리즘을 제안하였다. 이 방법은 각 네트워크간 트래픽 부하의 균형을 통해 지역적으로 발생하는, 과부하 현상을 극복하고 높은 대역폭 효율성을 보장한다. 컴퓨터 시뮬레이션을 통하여 대역폭 관리를 위해 제안된 기존의 타 기법들과의 비교, 분석을 수행하여 제안된 방법이 다양한 네트워크 트래픽 상황에서 우수한 성능을 가지는 것을 확인할 수 있었다.

An Improved Switching Topology for Single Phase Multilevel Inverter with Capacitor Voltage Balancing Technique

  • Ponnusamy, Rajan Soundar;Subramaniam, Manoharan;Irudayaraj, Gerald Christopher Raj;Mylsamy, Kaliamoorthy
    • Journal of Power Electronics
    • /
    • 제17권1호
    • /
    • pp.115-126
    • /
    • 2017
  • This paper presents a new cascaded asymmetrical single phase multilevel converter with a reduced number of isolated DC sources and power semiconductor switches. The proposed inverter has only two H-bridges connected in cascade, one switching at a high frequency and the other switching at a low frequency. The Low Switching Frequency Inverter (LSFI) generates seven levels whereas the High Switching Frequency Inverter (HSFI) generates only two levels. This paper also presents a solution to the capacitor balancing issues of the LSFI. The proposed inverter has lot of advantages such as reductions in the number of DC sources, switching losses, power electronic devices, size and cost. The proposed inverter with a capacitor voltage balancing algorithm is simulated using MATLAB/SIMULINK. The switching logic of the proposed inverter with a capacitor voltage balancing algorithm is developed using a FPGA SPATRAN 3A DSP board. A laboratory prototype is built to validate the simulation results.

이기종 셀룰러 네트워크에서 간섭 제거와 로드 밸런싱 (Interference Cancellation and Load Balancing in Heterogeneous Cellular Networks)

  • 이경재;조한신
    • 전자공학회논문지
    • /
    • 제51권10호
    • /
    • pp.45-49
    • /
    • 2014
  • 이기종 셀룰러 네트워크에서는 셀 계층간 접속되는 사용자의 수가 크게 달라지고, 이로 인해 사용자와 기지국 연결을 최적화하는 로드 밸런싱(load balancing)이 필수적으로 요구되어진다. 그러나 로드 밸런싱을 위하여 셀의 크기를 조정하는 경우 간섭량이 증가하는 문제점이 발생한다. 본 논문에서는 이기종 셀룰러 시스템(heterogeneous cellular system)에서 다중 수신 안테나를 이용하여 인접 셀로부터 오는 간섭을 제거할 때, 사용자와 기지국 사이의 연결을 최적화하고 사용자들의 전송 용량 성능을 확인한다. 결과적으로 다중 안테나 간섭 제거 기법을 적용하면, 로드 밸런싱이 이루어진 이기종 셀룰러 시스템의 성능을 크게 향상시킬 수 있음을 모의실험 결과를 통해 보여준다.

Optimized Energy Cluster Routing for Energy Balanced Consumption in Low-cost Sensor Network

  • Han, Dae-Man;Koo, Yong-Wan;Lim, Jae-Hyun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제4권6호
    • /
    • pp.1133-1151
    • /
    • 2010
  • Energy balanced consumption routing is based on assumption that the nodes consume energy both in transmitting and receiving. Lopsided energy consumption is an intrinsic problem in low-cost sensor networks characterized by multihop routing and in many traffic overhead pattern networks, and this irregular energy dissipation can significantly reduce network lifetime. In this paper, we study the problem of maximizing network lifetime through balancing energy consumption for uniformly deployed low-cost sensor networks. We formulate the energy consumption balancing problem as an optimal balancing data transmitting problem by combining the ideas of corona cluster based network division and optimized transmitting state routing strategy together with data transmission. We propose a localized cluster based routing scheme that guarantees balanced energy consumption among clusters within each corona. We develop a new energy cluster based routing protocol called "OECR". We design an offline centralized algorithm with time complexity O (log n) (n is the number of clusters) to solve the transmitting data distribution problem aimed at energy balancing consumption among nodes in different cluster. An approach for computing the optimal number of clusters to maximize the network lifetime is also presented. Based on the mathematical model, an optimized energy cluster routing (OECR) is designed and the solution for extending OEDR to low-cost sensor networks is also presented. Simulation results demonstrate that the proposed routing scheme significantly outperforms conventional energy routing schemes in terms of network lifetime.