• Title/Summary/Keyword: Balanced speed

Search Result 128, Processing Time 0.029 seconds

Development of Propulsion System for Korean High Speed Railway (한국형 고속전철용 추진제어장치 개발)

  • Lee K.J.;Cho S.J.;Woo M.H.;Jang S.Y.;Kim D.S.
    • Proceedings of the KIPE Conference
    • /
    • 2003.07b
    • /
    • pp.872-875
    • /
    • 2003
  • This paper introduces the propulsion system for Korean High Speed Railway(HSR). The developed propulsion system consists of PWM AC/DC converter and inverter. Compared with TGV-K, converters can improve input harmonics characteristics by the interlaced PW switching methods. And several merits such as unity power factor and simple regenerative operations can be also made. As a main power component, IGCT stack with suitable structure for high speed train and environmentally friendly cooling heat pipe is designed. In this paper, overall configuration of controller and control scheme is briefly described. Finally running tests are made to verify the developed propulsion system. The presented test results shows fast torque response, balanced converter current sharing, and appropriate running sequence.

  • PDF

An Investigation of Dynamic Stability of Self-Compensating Dynamic Balancer (자기보상 동적균형기의 동적안정성 연구)

  • Lee, Jongkil
    • Journal of KSNVE
    • /
    • v.4 no.4
    • /
    • pp.435-442
    • /
    • 1994
  • Self-Compensating Dynamic Balancer (SCDB) is composed of a circular disk with a groove containing spherical balls and a low viscosity damping fluid. To investigate the stability of the motion equations these equations are perturbed and the resulting perturbation equations are analyzed further to determine whether the perturbations grow or decay with dimensionless time. Based on the results of stability investigation, ball positions that result in a balanced system are stable above the critical speed for .betha.' = 3.8. At critical speed the perturbed motion is said to be stable for .betha.' = 23. However, the system is unstable below critical speed in any case of .betha.'.

  • PDF

Analysis of Macroscopic Spray Characteristics of Diesel Injectors with Three Different Needle Driving Type in Common Rail Direct Injection System (3가지 니들구동방식별 CRDi 디젤엔진용 고압 인젝터의 거시적 분무특성 비교해석)

  • Lee, Jin-Wook;Min, Kyoung-Doug
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.30 no.3
    • /
    • pp.351-358
    • /
    • 2006
  • The capability of high pressure injection with small fuel quantify at all engine operating conditions is one of the main feature in common rail fuel injection system, which is used in small and light-duty Diesel engine. The key parameter for the better atomized fuel sprays and multiple injections of this common rail fuel injection control, that can be freely selected irrespective of the engine speed and load is the mechanism controlling the needle energizing and movement in high pressure Diesel injector. In the electro-hydraulic injector, the injection nozzle is being opened and closed by movement of the injector's needle which is balanced by pressure between the nozzle seat and the needle control chamber. This study describes the macroscopic spray structure characteristics of the common rail Diesel injectors with different electric driving method i.e. the solenoid-driven and piezo-driven type. The macroscopic spray characteristics such as spray tip speed. spray tip penetration and spray cone angle were investigated by the high speed spray, which is measured by the back diffusion light illumination method with optical system for the high speed temporal photography in a constant volume chamber pressurized by nitrogen gas. As the results, the prototype piezo-driven injector system was designed and fabricated for the first time in domestic case and the effect of injector's needle response driven by different drive type was compared between the solenoid and piezo-driven injector It was found therefore. that the piezo-driven injector showed faster needle response and had better needle control capability by altering the electric input value than the solenoid-driven injector.

Investigation of the Filling Unbalance and Dimensional Variations in Multi-Cavity Injection Molded Parts (다수 캐비티의 사출성형품에서 충전의 불균형과 성형품 치수 편차의 교찰)

  • Kang, Min-A;Lyu, Min-Young
    • Polymer(Korea)
    • /
    • v.32 no.6
    • /
    • pp.501-508
    • /
    • 2008
  • Small injection molded articles such as lens and mobile product parts are usually molded in multi-cavity mold. The problem occurring in multi-cavity molding is flow unbalance among the cavities. The flow unbalance affects the dimensions and physical properties of molded articles. First of all, the origin of flow unbalance is geometrical unbalance of the delivery system. However, even the geometry of the delivery system is well balanced, cavity unbalance occurs. This comes from the temperature distributions in the cross-section of runner. Temperature distribution depends upon injection speed because heat generation near runner wall is high at high injection speed. Among the operational conditions, injection speed is the most significant process variable affecting the filling unbalances in multi-cavity injection molding. In this study, experimental study of flow unbalance has been conducted for various injection speeds and materials. Also, the filling unbalances were compared with CAE results. The dimensions and weights of multi-cavity molded parts were examined. The results showed that the filling unbalances vary according to the injection speeds and resins. Subsequently, the unbalanced filling and pressure distribution in the multi-cavity affect the dimensions and physical states of molded parts.

Fundamental Study on Oscillating Tillage (II) -Acting Horizontal Vibration on the Triple Tillage Blade- (진동경운(振動耕耘)에 관(関)한 기초연구(基礎硏究)(II) -3날 경운기구(耕耘機構)에 수평진동(水平振動)을 가(加)했을 경우(境遇)-)

  • Kim, Yong Hwan;Kim, Sung Tae
    • Journal of Biosystems Engineering
    • /
    • v.8 no.2
    • /
    • pp.1-10
    • /
    • 1983
  • The resulting characteristics of vibrations show different patterns for the various oscillating mechanisms. These vibrations causes troublesome operation problems for the operators and sometimes for the machines. Furthermore, in some cases the practical usage of this oscillating mechanism is constrained by its mechanical conditions. In this study, a balanced oscillating tillage tool with triple blades having different acting area was designed. The horizontal and vertical oscillating accelerations and draft power requirement due to the various travel speeds, lift angles, amplitudes and oscillating frequencies were investigated in a laboratory soil bin with a soil having invariable properties. The results obtained are summarized as follows: 1. Overall, the horizontal acceleration decreased as the oscillating frequency and amplitude decreased. But the increase in travel speed caused the decrease horizontal acceleration. The blade with the lift angle of $30^{\circ}$ exhibited the lowest value of horizontal acceleration among the blades tested. 2. For the vertical acceleration, the fluctuating trend of oscillating acceleration was similar to the trend of the horizontal acceleration. 3. The draft power requirement decreased as the amplitude and oscillating frequency increased. But the increase in travel speed caused the increase in draft power requirement. The blade with the lift angle of $10^{\circ}$ showed the lowest value of draft power requirement among the blades tested.

  • PDF

Investigation the tilling imbalance and dimensional variations of multi-cavity injection molded parts (다수 캐비티의 사출성형품에서 충전의 불균형과 치수편차의 고찰)

  • Kang, M.A.;Kim, Y.K.;Kim, J.M.;Lyu, M.Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.10a
    • /
    • pp.266-270
    • /
    • 2007
  • Small injection molded articles such as lens and mobile product's parts are usually molded in multi-cavity mold. The problems occurred in multi-cavity molding are flow imbalance among the cavities. The flow imbalance affects on the dimensions and physical properties of molded articles. First of all, the origin of flow imbalance is geometrical imbalance of delivery system. However, even the geometry of delivery system is balanced well the cavity imbalance is being developed. This comes from the unsuitable operational conditions of injection molding. Among the operational conditions, injection speed is the most significant process variable affecting the filling imbalances in multi-cavity injection molding. In this study, experimental study of flow imbalance has been conducted for various injection speeds and materials. Also, the filling Imbalances were compared with CAE results. The dimensions and physical state of multi-cavity molded parts were examined. The results showed that the filling imbalances vary according to the injection speed and flow property of resins. Subsequently, the imbalanced filling and pressure distribution in the multi-cavity affect on the dimensions and physical states of molded parts.

  • PDF

Vector Control for Two-Phase Inverter-Fed Two-Phase Induction Motors (2상 유도전동기 구동 2상 인버터의 벡터 제어)

  • Jang, Do-Hyun;Cho, Young-Hoon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.12 no.4
    • /
    • pp.310-317
    • /
    • 2007
  • In this paper, the system equation for the balanced two-phase induction motor is derived and the characteristics for speed control is also analyzed in the region of constant torque and constant power. The modified vector control theory is applied to two-phase motor drive system. The speed of two-phase motor drive can be controlled precisely by the modified indirect vector control theory. The modified vector control theory is simpler comparing to the conventional vector control because of the simpler axis transformation. The computer simulations and the experimental results presented to confirm the vector control for two-phase inverter fed two phase induction motor system.

Study of Compressor-Performance Improvement in Automotive Air-Conditioning System (자동차용 에어컨 압축기의 성능 향상에 대한 연구)

  • Kim, Young Shin;Yoo, Seong Yeon;Na, Seung Gyu
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.9
    • /
    • pp.713-718
    • /
    • 2015
  • The purpose of this study is to realize compressor-performance improvements in the fuel economy of an automotive air-conditioning system. We conduct cooling performance tests in a compressor calorimeter test stand. To improve the cooling performance, we investigate the increase in the suction flow rate and the decrease in the discharge dead volume. Based on the results of the test, we found that the cooling capacity and the coefficient of performance (COP) of the compressors were improved as follows. The cooling performance improved greater at high speeds than low speeds in the case of an increase in the suction flow rate increase, and it improved more at low speeds than at high speed when there was a decrease in the discharge dead volume. When both of the above factors were included, we observed that the improvement effects were generally balanced for both high- and low-speed modes, and there was a significant improvement in the discharge temperature. The improvement was found to be about 3.2% at low speed, 8.3% at high speed during in cooling performance improvement, about 5.8% at low speed and about 6.2% at high speed in COP improvement, and there was a decrease of about $3^{\circ}C$ at low speed and a $5^{\circ}C$ decrease at high speed in discharge temperature.

Effects of High-Speed Train on Regional Population In-Migration - Focusing on Shrinking City and Demographic Structure - (고속철도가 지역 인구 이동에 미치는 영향 -지방소멸 위험과 인구 구조를 중심으로-)

  • Eunji Kim;Heeyeun Yoon
    • Journal of the Korean Regional Science Association
    • /
    • v.40 no.2
    • /
    • pp.91-106
    • /
    • 2024
  • Around the world, many countries experiencing the issue of shrinking cities are continually expanding high-speed rail networks to enhance regional accessibility and address imbalances. This study analyzed the effects of high-speed train operations on the age-specific population migration in South Korean municipalities from 2012 to 2019, taking into account the risk levels of shrinking cities. For this purpose, an analysis was conducted using age-specific net in-migration population as the dependent variable, employing the spatial panel autoregressive model. The research results indicated that the influence of high-speed rail on regional population inflow varies depending on the risk level of shrinking city. In other words, high-speed railway operations had positive effects on population inflow in the capital areas and some major cities, while explained population outflow in the other regions. High-speed railways particularly exerted a significant impact on the inflow of the young and middle-aged population, representing the working age, but this effect was also limited to regions with a low risk of shrinkage. The findings of this study emphasize the importance of considering planned population and industrial attraction when installing high-speed rail with the goal of achieving regional balanced development and mitigating shrinkage. The results of this study also suggest the need for subsequent research to explore factors that positively influence population structure and inflow based on the level of shrinkage risk in each region, as well as the introduction of new policies tailored to the specific situations of each local government.

Analysis of Input·Output Characteristics in the PWM Converter with Unbalance Supply Voltage (불평형 전원 전압을 갖는 PWM 컨버터의 입·출력 특성 분석)

  • Khoo, Ja-Kyeung;Kim, Sang-Hoon
    • Journal of Industrial Technology
    • /
    • v.25 no.B
    • /
    • pp.203-210
    • /
    • 2005
  • The PWM(Pulse Width Modulated) converter for the AC to DC rectification has become attractive in the industrial variable-speed drive application and the electric utilities due to the following benefits: Nearly the sinusoidal input current with unity power factor; Controllable DC link voltage; Bidirectional power flow. This paper presents a quantitative analysis of single and three phase PWM converter's input and output characteristics as a function of the input filter inductance under balanced and unbalanced conditions. Also, its performance under the supply voltage including harmonics is investigated by simulation with Matlab Simlulink and experiments. These results provide a reference for selecting the reasonable converter's input filter inductance for given harmonics or power factor criterion.

  • PDF