• Title/Summary/Keyword: Balance test

Search Result 1,997, Processing Time 0.031 seconds

Experimental Investigation on the Droplet Entrainment in the Air-Water Horizontal Stratified Flow (물-공기 수평 성층류 유동조건에서 액적이탈 현상에 대한 실험연구)

  • Bae, Byeong Geon;Yun, Byong Jo;Kim, Kyoung Doo;Bae, Byoung Uhn
    • Journal of Energy Engineering
    • /
    • v.24 no.1
    • /
    • pp.114-122
    • /
    • 2015
  • In the high convective gas flow condition, irregular shaped water waves from which droplet entrainment occurs are generated under horizontally stratified two-phase flow condition. KAERI proposed a new mechanistic droplet entrainment model based on the momentum balance equation consisting of the shear stress, surface tension, and gravity forces. However, this model requires correlation or experimental data of several physical parameters related to the wave characteristics. In the present study, we tried to measure the physical parameters such as wave slope, wave hypotenuse length, wave velocity, wave frequency, and wavelength experimentally. For this, an experiment was conducted in the horizontal rectangular channel of which width, height, and length are, respectively, 40 mm, 50 mm, and 4.2 m. In the present test, the working fluids are chosen as air and water. The PIV technique was applied not only to obtain images for phase interface waves but also to measure the velocity field of the water flow. Additionally, we developed the parallel wire conductance probe for the confirmation of wave height from PIV image. Finally, we measured the physical parameters to be used in the validation of new droplet entrainment model.

A Three-Dimensional Galerkin-FEM Model with Density Variation (밀도 변화를 포함하는 3차원 연직함수 전개모형)

  • 이호진;정경태;소재귀;강관수;정종율
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.8 no.2
    • /
    • pp.123-136
    • /
    • 1996
  • A three-dimensional Galerkin-FEM model which can handle the temporal and spatial variation of density is presented. The hydrostatic approximation is used and density effects are included by means of conservation equation of heat and the equation of state. The finite difference grids are used in the horizontal plane and a set of linear-shape functions is used for the vertical expansion. The similarity transform is introduced to solve resultant matrix equations. The proposed model was first applied to the density-driven circulation in an idealized basin in the presence of the heat exchange between the air and the sea. The advection terms in the momentum equation were ignored, while the convection terms were retained in the heat equation. Coefficients of the vertical eddy viscosity and diffusivity were fixed to be constant. Calculation in a non-rotating idealized basin shows that the difference in heat capacity with depth gives rise to the horizontal gradient of temperature. Consequently, there is a steady new in the upper layer in the direction of increasing depth with compensatory counter flow .in the lower layer. With Coriolis force, geostrophic flow was predominant due to the balance between the pressure gradient and the Coriolis force. As a test in region of irregular topography, the model is applied to the Yellow Sea. Although the resultant flow was very complex, the character of the flow Showed to be geostrophic on the whole.

  • PDF

Parametric Study on Wing Design of Insect-mimicking Aerial Vehicle with Biplane Configuration (겹 날개를 사용하는 곤충 모방 비행체의 날개 형상에 대한 파라메트릭 연구)

  • Park, Heetae;Kim, Dongmin;Mo, Hyemin;Kim, Lamsu;Lee, Byoungju;Kim, Inrae;Kim, Seungkeun;Ryi, Jaeha;Choi, Jong-Soo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.9
    • /
    • pp.712-722
    • /
    • 2018
  • This paper conducts parametric studies on flapping wing design, one of the most important design parameters of insect-mimicking aerial vehicles. Experimental study on wing shape was done through comparison and analysis of thrust, pitching moment, power consumption, and thrust-to-power ratio. A two-axis balance and hall sensor measure force and moment, and flapping frequency, respectively. Wing configuration is biplane configuration which can develop clap and fling effect. A reference wing shape is a simplified dragonfly's wing and studies on aspect ratio and wing area were implemented. As a result, thrust, pitching moment, and power consumption tend to increase as aspect ratio and area increase. Also, it is found that the flapping mechanism was not normally operated when the main wing has an aspect ratio or area more than each certain value. Finally, the wing shape is determined by comparing thrust-to-power ratio of all wings satisfying the required minimum thrust. However, the stability is not secured due to moment generated by disaccord between thrust line and center of gravity. To cope with this, aerodynamic dampers are used at the top and bottom of the fuselage; then, indoor flight test was attempted for indirect performance verification of the parametric study of the main wing.

The Future of Republic of Korea Navy : Toward a Korean Way of Naval Strategy (미래 대한민국 해군력 역할과 발전)

  • Choi, Joung-Hyun
    • Strategy21
    • /
    • s.37
    • /
    • pp.65-103
    • /
    • 2015
  • This study is an attempt to look into the future role of the ROKN and to provide a strategic way forward with a special focus on naval strategic concept and force planning. To accomplish this goal, this research takes four sequential steps for analysis: 1) assessing the role and utility of naval power of ROKN since its foundation back in 1945; 2) forecasting features of various maritime threats to influence the security of Korea in the future directly or indirectly; 3) identifying the roles to be undertaken by future ROKN; and 4) recommending Korean way of naval force planning and the operational concept of naval power. This study seeks to show that ROKN needs comprehensive role to better serve the nation with respect to national security, national prosperity and development, and future battle-space management. To safeguard the national security of Korea, it suggests three roles: 1) national guard for the peaceful unification; 2) protector of the maritime sovereignty; and 3) suppressor to maritime threats. Three more roles are highlighted for national prosperity: 1) escort of the national economy; 2) guardian for national maritime activities; and 3) contributor to the world peace. These roles need to be closely connected with the role for the battle-space management. This paper addresses the need for a dramatic shift of the central operational domain from land to maritime in the future. This will eventually offer future ROKN a leading role for developing strategic concept and force planning rather than merely a supporting one. This study finally suggests 'balanced' strategy both in concept development and force planning. A balanced force planning is a 'must' rather than an 'option' when considering a division of function between Task Fleets and Area Fleets, constructing cutting-edge conventional forces such as Aegis destroyer, CVs, or submarines, and the mix of high-profile platform and low-profile when composing future fleets. A 'balance' is also needed in operational concept. The fleet should be prepared to fulfill its missions based on two different types of force operation i.e., coercive or cooperative application of the utility of naval force. The findings and recommendations of the study are relevant today, and will be increasingly important in the future to achieve various political goals required by enhancing the utility of naval power.

Planning Evacuation Routes with Load Balancing in Indoor Building Environments (실내 빌딩 환경에서 부하 균등을 고려한 대피경로 산출)

  • Jang, Minsoo;Lim, Kyungshik
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.5 no.7
    • /
    • pp.159-172
    • /
    • 2016
  • This paper presents a novel algorithm for searching evacuation paths in indoor disaster environments. The proposed method significantly improves the time complexity to find the paths to the evacuation exit by introducing a light-weight Disaster Evacuation Graph (DEG) for a building in terms of the size of the graph. With the DEG, the method also considers load balancing and bottleneck capacity of the paths to the evacuation exit simultaneously. The behavior of the algorithm consists of two phases: horizontal tiering (HT) and vertical tiering (VT). The HT phase finds a possible optimal path from anywhere of a specific floor to the evacuation stairs of the floor. Thus, after finishing the HT phases of all floors in parallel the VT phase begins to integrate all results from the previous HT phases to determine a evacuation path from anywhere of a floor to the safety zone of the building that could be the entrance or the roof of the building. It should be noted that the path produced by the algorithm. And, in order to define the range of graph to process, tiering scheme is used. In order to test the performance of the method, computing times and evacuation times are compared to the existing path searching algorithms. The result shows the proposed method is better than the existing algorithms in terms of the computing time and evacuation time. It is useful in a large-scale building to find the evacuation routes for evacuees quickly.

Wind Tunnel Test Study on the Characteristics of Wind-Induced Responses of Tall Buildings with Openings (중공부(中空部)를 가진 고층건축물(高層建築物)의 풍응답(風應答) 특성(特性)에 관한 풍동실험(風洞實驗) 연구(硏究))

  • Kim, Dong Woo;Kil, Yong Sik;Ha, Young Cheol
    • Journal of Korean Society of Steel Construction
    • /
    • v.17 no.4 s.77
    • /
    • pp.499-509
    • /
    • 2005
  • The excessive wind-induced motion of tall buildings most frequently result from vortex-shedding-induced across-wind oscillations. This form of excitation is most pronounced for relatively flexible, lightweight, and lightly damped high-rise buildings with constant cross-sections. This paper discusses the aerodynamic means ofmitigating the across-wind vortex shedding induced in such situations. Openings are added in both the drag and lift directions in the buildings to provide pressure equalization. Theytend to reduce the effectiveness of across-wind forces by reducing their magnitudes and disrupting their spatial correlation. The effects of buildings with several geometries of openings on aerodynamic excitations and displacement responses have been studied for high-rise buildings with square cross-sections and an aspect ratio of 8:1 in a wind tunnel. High-frequency force balance testshave been carried out at the Kumoh National University of Technology using rigid models with 24 kinds of opening shapes. The measured model's aerodynamic excitations and displacement were compared withthose of a square cylinder with no openings to estimate the effectiveness of openings for wind-induced oscillations. From these results, theopening shape, size, and location of buildings to reduce wind-induced vortex shedding and responses were pointed out.

The Effect of Wind (Typhoon), Tide and Solar Radiation for the Water Stratification at Deukryang Bay in Summer , 1992 (하계 득량만의 연직혼합과 관련된 바람 (태풍), 조석, 태양에너지의 영향)

  • Lee, Byung-Gul;Cho, Kyu-Dae;Hong, Chol-Hoon
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.31 no.3
    • /
    • pp.256-263
    • /
    • 1995
  • This paper presents the evidence on the considerably strong stratification - destratification(SD) phenomena during spring - neap tidal cycle in summer of 1992 based on the observed temperature, salinity and density data. To find out the main factors causing SD in the bay, we computed the rate of potential energy balance of the surface heat flux, tidal and wind stirring proposed by Simpson and Hunter (1974) and Simpson and Bowders (1981) using observed data. It was found that the energy of the wind stirring was one - order smaller than those of the heat flux and the tidal stirring. It means that the variation of stratification phenomena in the bay mainly depend on tidal stirring and sea surface heating in summer if there was no exceptionally strong wind event like a typhoon. Finally, we tested the effects of typhoon on the mixing characteristics of the bay using the example of a empirical typhoon model. It was found that when wind speed is larger than 15m/sec in Deukryang Bay, the wind energy was always larger than the average heating energy based on empirical typhoon model test. Particularly, typhoon passed on the left side of the bay, strong wind energy happened, which is almost the same as tidal energy of spring tide.

  • PDF

The Effect of Tailored Occupational Intervention on the Elderly with Mild Dementia using the Day Care Center (주간보호센터 이용 경도 치매노인에게 적용한 맞춤형 작업 중재의 효과)

  • Lee, Chun-Yeop;Kim, Ji-Hoon;Kim, Hee-Jung;Hong, Ki-Hoon;Jung, Hye-Rim
    • The Journal of Korean society of community based occupational therapy
    • /
    • v.10 no.2
    • /
    • pp.25-36
    • /
    • 2020
  • Objective : This study identified the effect of tailored occupational intervention applied to the elderly with mild dementia using the day care center. Methods : This study applied the single-group experimental design to 29 elderly with mild dementia who use the day care center in B area, and conducted a total of 10 sessions once a week, 60 minutes. Intervention consisted largely of group activities and individual activities, and individual activities were conducted one-on-one with various activities necessary to select occupational goals and achieve the goals through consultation between the elderly with mild dementia and the person in charge. The effects of tailored occupational intervention were confirmed through CERAD, BBS, and GDS. Results : Significant differences were shown in the total score of MMSE-KC, time orientation, attention, constructional praxis delayed recall, and trail making test B in the cognitive function changes, and standing to sitting, standing unsupported with eyes closed of BBS in the physical function changes, and in the GDS score in the depression changes (p<.05). Conclusion : Tailored occupational intervention has been shown to be effective in improving cognitive and physical functions of the elderly with mild dementia and reducing depression. This provided a basis for proposing a tailored occupational intervention as an intervention that can be applied to the elderly with mild dementia.

Design of Fetal Health Classification Model for Hospital Operation Management (효율적인 병원보건관리를 위한 태아건강분류 모델)

  • Chun, Je-Ran
    • Journal of Digital Convergence
    • /
    • v.19 no.5
    • /
    • pp.263-268
    • /
    • 2021
  • The purpose of this study was to propose a model which is suitable for the actual delivery system by designing a fetal delivery hospital operation management and fetal health classification model. The number of deaths during childbirth is similar to the number of maternal mortality rate of 295,000 as of 2017. Among those numbers, 94% of deaths are preventable in most cases. Therefore, in this paper, we proposed a model that predicts the health condition of the fetus using data like heart rate of fetuses, fetal movements, uterine contractions, etc. that are extracted from the Cardiotocograms(CTG) test using a random forest. If the redundancy of the data is unbalanced, This proposed model guarantees a stable management of the fetal delivery health management system. To secure the accuracy of the fetal delivery health management system, we remove the outlier which embedded in the system, by setting thresholds for the upper and lower standard deviations. In addition, as the proportion of the sequence class uses the health status of fetus, a small number of classes were replicated by data-resampling to balance the classes. We had the 4~5% improvement and as the result we reached the accuracy of 97.75%. It is expected that the developed model will contribute to prevent death and effective fetal health management, also disease prevention by predicting and managing the fetus'deaths and diseases accurately in advance.

A Study on Liquified Petroleum Gas(LPG) Fuel Quantitative Method using Coriolis Mass Flowmeter (코리올리 질량유량계를 이용한 액화석유가스(LPG) 정량 측정 방법 연구)

  • Park, Tae-Seong;Seong, Sang-Rae;Yim, Eui-Soon;Lee, Joung-Min;Lee, Myung-Sig;Kang, Hyung-Kyu
    • Journal of the Korean Institute of Gas
    • /
    • v.22 no.6
    • /
    • pp.109-122
    • /
    • 2018
  • Domestic LPG meters are being tested for LPG quantification in accordance with the "Measures Act". The LPG meter is re-tested every three years in accordance with the "Enforcement Decree of the Measures Act". The maximum permissible error within the test is within ${\pm}1.0%$, and the tolerance is within ${\pm}1.5%$. For the quantitative measurement of LPG, a hydrometer for LPG, a balance, and a pressure vessel are used. The volume of LPG varies in depending on the temperature and pressure. The current quantitative measurement method of LPG requires the measurement of temperature, pressure and density in order to determine the volume of LPG, respectively, and some equipments are needed accordingly. Coriolis mass flowmeter, on the other hand, measure the mass flow, density and temperature at the same time, and can be converted and calculated to the required values using a computer program, also it is widely applied in the industrial field. In this study, the volume of LPG was measured using a Coriolis mass flowmeter as a basic study of LPG quantitative measurement. In addition, it is shown that it is possible to apply for the LPG quantitative measurement using the Coriolis mass flowmeter by comparing it with the conventional LPG quantitative measurement method.