• Title/Summary/Keyword: Balance hole

Search Result 73, Processing Time 0.026 seconds

Effects of the Balance Hole Diameter of an Automotive Closed Type Water Pump on Hydraulic Performance and Axial Force (자동차 워터펌프 밸런스 홀 직경이 수력성능 및 축추력에 미치는 영향)

  • Lee, Gee-Soo;Heo, Hyung-Seok;Kim, Hyun-Chul;Oh, Chang-Bok
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.3
    • /
    • pp.111-117
    • /
    • 2008
  • The aim of this paper was to investigate the fluid dynamic behavior of the automotive closed type water pump with balance hole in order to evaluate and justify its overall hydraulic performance and, in particular to analyze the effects of the balance hole on the reduction of hydraulic flow force of it. The analysis has been peformed by applying the commercial computational fluid dynamics (CFD) code, Fluent, to the solution of the 3-D turbulent flow fields of automotive closed type water pump. The reliability of the employed analysis was demonstrated by the comparison between numerical result and experimental data. Although, hydraulic head of the closed type water pump with 3mm diameter of balance hole decreased by 1.1%, axial flow force was effectively reduced by 13.3%, comparison of it with no hole at design point.

Enhanced efficiency of organic light-emitting diodes by doping the holetransport layer

  • Kwon, Do-Sung;Song, Jun-Ho;Lee, Hyun-Koo;Shin, You-Chul;Lee, Chang-Hee
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07b
    • /
    • pp.1401-1403
    • /
    • 2005
  • We present that the carrier balance can be improved by doping a hole transport layer of 4,4'- bis[N-(1-napthyl)-N-phenyl-amino]-biphenyl (${\alpha}$-NPD) with a hole blocking material of 2,9-dimethyl- 4,7-diphenyl-1,10-phenanthroline (BCP). The doping leads to disturb hole transport, which can enhance the balance of electron s and holes concentration in the emitting layer, aluminum tris(8 -hydroxyquinoline) (Alq3), resulting in enhanced electroluminescence (EL) quantum efficiency for the device with the doped ${\alpha}$-NPD.

  • PDF

Electroluminescence characteristics of organic light-emitting diodes with TPD doped PVK as the hole transport layer

  • Shin, Y.C.;Song, J.H.;Lee, C.H.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07b
    • /
    • pp.1404-1407
    • /
    • 2005
  • We have fabricated organic light-emitting diodes using poly(N-vinylcarbazole)(PVK) doped with N,N'- diphenyl-N,N'-bis(3-methylphenyl)-[l,l'-biphenyl]- 4,4/-diamine (TPD) as the hole transport layer. TPD molecules act as the trapping sites in PVK and reduce the hole mobility, which can enhance the electronhole balance in the emitting layer, resulting in the enhanced device performance. We have found the optimum ratio of TPD to PVK for the EL efficiency.

  • PDF

Numerical Analysis of OLED Luminescence Efficiency by Hole Transport Layer Change (유기발광 소자의 수송층 두께 변화에 따른 수치적 해석)

  • Lee, Jung-Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.12
    • /
    • pp.1341-1346
    • /
    • 2004
  • The OLED research is gone for two directions. One is material development research, and another one is structural improvement part. All two are thing to heighten luminescence efficiency of OLED. n other to improve luminescence efficiency of OLED Electron - hole pairs must consist much more in the device Their profiles are sensitive to mobility velocity of electrons and holes. In this paper, we demonstrate the difference of velocity between hole and electron by experiments, and compare with a data of simulation and experiment changing hole carrier transport layer thickness, so we get the optimal we improve luminescence efficiency. We suggest improving the efficiency of OLEDS would be to balance the injection of electrons and holes into light emission layer of the device. And, we improve understanding of the various luminescence efficiency through experiments and numerical analysis of luminescence efficiency in variable hole carrier transport layer's thickness.

The Study of Luminescence Efficiency by change of OLED's Hole Transport Layer

  • Lee, Jung-Ho
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.7 no.2
    • /
    • pp.52-55
    • /
    • 2006
  • The OLEDs(Organic Light-Emitting Diodes) structure organizes the bottom layer using glass, ITO(indium thin oxide), hole injection layer, hole transport layer, emitting material layer, electron transport layer, electron injection layer and cathode using metal. OLED has various advantages. OLEDs research has been divided into structural side and emitting material side. The amount of emitting light and luminescence efficiency has been improved by continuing effort for emitting material layer. The emitting light mechanism of OLEDs consists of electrons and holes injected from cathode and anode recombination in emitting material layer. The mobilities of injected electrons and holes are different. The mobility of holes is faster than that of electrons. In order to get high luminescence efficiency by recombine electrons and holes, the balance of their mobility must be set. The more complex thin film structure of OLED becomes, the more understanding about physical phenomenon in each interface is needed. This paper observed what the thickness change of hole transport layer has an affection through the below experiments. Moreover, this paper uses numerical analysis about carrier transport layer thickness change on the basis of these experimental results that agree with simulation results.

Efficient Organic Light-Emitting Diodes with a use of Hole-injection Buffer Layer

  • Kim, Sang-Keol;Chung, Dong-Hoe;Chung, Taek-Gyun;Kim, Tae-Wan
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2002.08a
    • /
    • pp.766-769
    • /
    • 2002
  • We have seen the effects of hole-injection buffer layer in organic light-emitting diodes using copper phthalocyanine(CuPc), poly(vinylcarbazole)(PVK), and Poly(3,4-ethylenedioxythiophene):poly(styrene-sulfonate)(PEDOT:PSS) in a device structure of ITO/buffer/TPD/$Alq_3$/Al. Polymer PVK and PEDOT:PSS buffer layer was made using spin casting method and the CuPc layer was made using thermal evaporation. Current-voltage characteristics, luminance-voltage characteristics and efficiency of device were measured at room temperature with a thickness variation of buffer layer. We have obtained an improvement of the external quantum efficiency by a factor of two, four, and two and half when the CuPc, PVK, and PEDOT:PSS buffer layer are used, respectively. The enhancement of the efficiency is attributed to the improved balance of holes and elelctrons due to the use of hole-injection buffer layer. The CuPc and PEDOT:PSS layer functions as a hole-injection supporter and the PVK layer as a hole-blocking one.

  • PDF

Localized Electro-chemical Micro Drilling Using Ultra Short Pulses (초단펄스 전해 국부화를 이용한 미세구멍 가공)

  • 안세현;류시형;최덕기;주종남
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.8
    • /
    • pp.213-220
    • /
    • 2003
  • By the localization of electro-chemical dissolution region, we succeeded in a few micrometer size hole drilling on stainless steel with the radial machining gap of about 1 ${\mu}{\textrm}{m}$. Tens of nanosecond duration voltage pulses were applied between WC micro-shaft and stainless steel in the 0.1 M $H_2SO_4$ solution. Pt balance electrode was used to drill the high aspect ratio micro-hole without generation of Cr oxide layer on the machined surface. The effects of applied voltage, pulse duration, and pulse period on localization distance were investigated according to machining time. We suggested the taper reduction technique especially brought up on blind-hole machining. High quality micro-holes with 8 ${\mu}m$ diameter with 20 ${\mu}m$ depth and 12 ${\mu}m$ diameter with 100 ${\mu}m$ depth were drilled on 304 stainless steel foil. The various hole shapes were also produced including stepped holes and taper free holes.

Effect of Hole Transport Layer on the Electrical and Optical Characteristics of Inverted Organic Light-Emitting Diodes (정공수송층이 역구조 OLED의 전기 및 광학적 특성에 미치는 영향)

  • Se-Jin Im;Dae-Gyu Moon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.36 no.4
    • /
    • pp.397-402
    • /
    • 2023
  • We have developed inverted green phosphorescent organic light emitting diodes (OLEDs) using 1,1-bis[(di-4-tolylamino)phenyl]cyclohexane (TAPC) and bis(carbazole-9-yl)biphenyl (CBP) hole transport layers. The driving voltage, current efficiency, power efficiency, and emission characteristics of devices were investigated. While the driving voltage for the same current density was about 1~2 V lower in the devices with the TAPC layer, the maximum luminance was higher in the device with the CBP layer. The maximum current efficiency and power efficiency were 3.2 and 2.7 times higher in the device with the CBP layer, respectively. The higher efficiency in the CBP device resulted from the enhanced hole-electron balance although weak parasitic recombination takes place in the CBP hole transport layer.

Experimental Study for the Aerodynamic Characteristics of Slanted-Base Ogive Cylinder (기저면이 경사진 Ogive실린더의 공력특성에 관한 실험적 연구)

  • 맹주성;양시영;오세진
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.10
    • /
    • pp.2664-2674
    • /
    • 1994
  • Drag, lift, and pitching moment measurements have been made on a range of slanted-base ogive cylinders, using the KANOMAX wind tunnel and balance system. Test Reynolds numbers(based on model maximum diameter) varied from $0.54{\times}10^{5}{\;}to{\;}1.56{\times}10^{5}$. Crossflow velocity maesurement was conducted by 5-hole pitot tube at $Re_{D}=1.46{\times}10^{5}$. For two base angle $({\theta}=30$ and 45 deg.), aerodynamic forces and moment were measured with increasing angle of attack(0~30 deg.). Two types of wake flow were observed, a quasisymetric turbulent closure or a longitudinal vortex flow. Aerodynamic characteristics differ dramatically between the two wake types. It was found that the drag, lift and pitching moment coefficients increased with increasing angle of attack.

Avoiding Energy Holes Problem using Load Balancing Approach in Wireless Sensor Network

  • Bhagyalakshmi, Lakshminarayanan;Murugan, Krishanan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.5
    • /
    • pp.1618-1637
    • /
    • 2014
  • Clustering wireless sensor network is an efficient way to reduce the energy consumption of individual nodes in a cluster. In clustering, multihop routing techniques increase the load of the Cluster head near the sink. This unbalanced load on the Cluster head increases its energy consumption, thereby Cluster heads die faster and create an energy hole problem. In this paper, we propose an Energy Balancing Cluster Head (EBCH) in wireless sensor network. At First, we balance the intra cluster load among the cluster heads, which results in nonuniform distribution of nodes over an unequal cluster size. The load received by the Cluster head in the cluster distributes their traffic towards direct and multihop transmission based on the load distribution ratio. Also, we balance the energy consumption among the cluster heads to design an optimum load distribution ratio. Simulation result shows that this approach guarantees to increase the network lifetime, thereby balancing cluster head energy.