• Title/Summary/Keyword: Baculovirus Expression Vector System (BEVS)

Search Result 13, Processing Time 0.022 seconds

The Production of Heterologous Proteins Using the Baculovirus Expression Vector System in Insect Cells

  • Kwon, O-Yu;Goo, Tae-Won;Kwon, Tae-Young;Lee, Sung-Han
    • Journal of Life Science
    • /
    • v.12 no.2
    • /
    • pp.53-56
    • /
    • 2002
  • The baculovirus expression vector system (BEVS) is one of the powerful heterologous protein expression systems using insect cells. As a result this has become a hot issue in the fleld of biotechnology. The advantage of the BEVS is that the large-scale production of heterologous proteins, which undergo posttranslational modification in the endoplasmic reticulum (ER), can be accomplished. Altrough posttranslational modification of heterologous proteins in insect cells is more similar to mammalian cells than yeast, it is not always identical. Therefore, aggregation and degradation can sometimes occur in the ER. To produce a high level of bioactive heterologous proteins using BEVS in insect cells, the prerequisite is to completely understand the posttranslational conditions that determine how newly synthesized polypeptides are folded and assembling with ER chaperones in the ER lumen. Here, we provide information on current BEVS problems and the possibility of successful heterologous protein production from mammalian cells.

  • PDF

Effect of a Bombyx mori Protein Disulfide Isomerase on Production of Recombinant Antibacterial Peptides

  • Goo, Tae-Won;Kim, Seong-Wan;Choi, Kwang-Ho;Kim, Seong-Ryul;Kang, Seok-Woo;Park, Seung-Won;Yun, Eun-Young
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.26 no.2
    • /
    • pp.119-123
    • /
    • 2013
  • The insect baculovirus expression vector system (BEVS) is useful for producing biologically active recombinant proteins. However, the overexpression of heterologous proteins using this system often results in misfolded proteins and the formation of protein aggregates. To overcome this limitation, we developed a versatile baculovirus expression and secretion system using Bombyx mori protein disulfide isomerase (bPDI) as a fusion partner. bPDI gene fusion was found to improve the secretions and antibacterial activities of recombinant nuecin and enbocin proteins. Thus, we conclude that bPDI gene fusion is a useful addition to BEVS for the large-scale production of bioactive recombinant proteins.

Recombinant human BMP-2/-7 heterodimer protein expression for bone tissue engineering using recombinant baculovirus expression system

  • Park, Seung-Won;Goo, Tae-Won;Kim, Seong Ryul;Choi, Kwang-Ho
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.32 no.2
    • /
    • pp.49-53
    • /
    • 2016
  • Bone morphogenetic proteins (BMPs) are essential growth factors for bone formation, skeletal development and bone regeneration. The BMP-2/7 heterodimer is known to have remarkable effects on osteogenic induction that are even stronger than the BMP-2 or BMP-7 homodimers. We designed a recombinant human BMP-2/7 (rhBMP-2/7) heterodimer protein with four glycine residues between BMP-2 and BMP-7 protein to facilitate free bond rotation of domains. The Baculovirus Expression Vector System (BEVS) is routinely used to produce recombinant proteins in the milligram scale. In this study, the BEVS was used to express the rhBMP-2/7 protein whrer the recombinant baculovirus was recovered in the host Sf9 cells. To confirm the biological activity of rhBMP-2/7 protein secreted from the BEVS as an osteogenic differentiation and induction factor, we measured the BMP-induced ALP activity. rhBMP-2/7 could be used as an alternative to BMPs to overcome limitations like short half-life and requirement for high concentrations. Furthermore, rhBMP-2/7 may be an efficient tool for various application studies such as bone regeneration and skeletal development.

Expression of Antibacterial Protein, Nuecin, Using Baculorivus Expression Vector System in Bm5 Insect Cell and Bombyx mori (누에 배양세포(Bm5) 및 생체에서 베큘로바이러스 발현계를 이용한 누에신 단백질 발현 특성)

  • 윤은영;구태원;황재삼;김상현;강석우;김근영;진병래
    • Journal of Sericultural and Entomological Science
    • /
    • v.44 no.2
    • /
    • pp.69-73
    • /
    • 2002
  • For the practical use of nuecin protein, we tried to overexpress nuecin using Bm5 insect cell and Bombyx mori. We inserted nuecin cDNA into pBm10po1-Xa vector derived from B. mori nuclear polyhedrosis virus (BmNPV), and expressed in Bm5 cells and B. mori respectively. SDS-PAGE and Northern blot analysis showed an expressed of the protein when baculovirus expression vector system (BEVS) was used. The amount of intracellular protein is abundant, but the amount of extracellular protein is poor. The results suggest that the biologically active nuecin protein produced by using BEVS is poor because incresed level of misfolded nuecin by the strong promoter, polyhedrin and p 10 of BEVS, decrease the level of free chaperons and foldases by binding with them.

Investigation of post-translational modification of the secreted protein expressed in insect cell lines using baculovirus expression vector system(BEVS)

  • Yun, Eun-Young;Goo, Tae-Won;Kim, Sung-Wan;Park, Kwang-Ho;Hwang, Jae-Sam;Kang, Seok-Woo;Kwon, O-Yu
    • Proceedings of the Korean Society of Sericultural Science Conference
    • /
    • 2003.04a
    • /
    • pp.82-83
    • /
    • 2003
  • In previous experiment, we reported when the heterologous protein is expressed by using baculovirus expression vector system (BEVS), although the amount of intracellular protein is abundant, the amount of extracellular Protein is poor. As the link in the chain of the research, we investigated the secretory pathway, important in case of the secretory protein, of the protein expressed in insect cells using BEVS. (omitted)

  • PDF

Large-Scale Production of Rotavirus VLP as Vaccine Candidate Using Baculovirus Expression Vector System (BEVS)

  • Park, Jin-Yong;Kim, Hun;Hwang, Hi-Ku;Lee, Su-Jeen;Kim, Hyun-Sung;Hur, Byung-Ki;Ryu, Yeon-Woo;An, Chang-Nam;Kim, Jong-Soo
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.1
    • /
    • pp.35-40
    • /
    • 2004
  • Rotavirus virus-like particle (VLP) composed of VP2, VP6, and VP7 was expressed in the Baculovirus Expression Vector System (BEVS). Sf9 cell, a host of the baculovirus, was cultured from a 0.5-1 spinner flask to the 50-1 bioreactor system. Sf9 cell was maintained at cell density between 3.0E+05 and 3.0E+06 cells/ml and grew up to 1.12E+07 cells/ml in the bioreactor. Growth kinetics was compared under different culture systems and showed similar growth kinetics with 20.1-25.2 h of doubling time. Early exponentially growing cell culture was infected with three recombinant baculoviruses expressing VP2, VP6, and VP7 protein at 1.0, 2.0, and 0.2 moi, respectively. The expression of rotavirus proteins was confirmed by Western blot analysis and its three-layered virus-like structure was observed under an electron microscope. Rotavirus VLP was semipurified and immunized in ICR mice intramuscularly. Rotavirus-specific serum antibody was detected from 2 weeks after the immunization and lasted at least 21 weeks of the post-immunization, indicating its possible use as a vaccine candidate.

Expression of Recombinant Human Bone morphogenetic protein 2 (hBMP2) in Insect cells

  • Kim, Seong-Wan;Kim, Seong-Ryul;Park, Seung Won;Goo, Tae-Won;Choi, Kwang-Ho
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.34 no.1
    • /
    • pp.1-5
    • /
    • 2017
  • Bone morphogenetic protein 2 (BMP2) plays an important role in the development of bone and cartilage. It is involved in the hedgehog pathway, TGF beta signaling pathway, and in cytokine-cytokine receptor interaction. It is involved also in cardiac cell differentiation and epithelial to mesenchymal transition. In this study, We expressed human BMP2 (hBMP2) recombinant protein using Baculovirus Expression Vector System (BEVS) in Sf9 insect cells. The hBMP2 cDNA was cloned into baculovirus transfer vector, pBacgus-4x-1 and recombinant baculovirus was screened out through X-gal and GUS-fusions assay. Western blot analysis shown that molecular weight of hBMP2 recombinant protein was about 44.71 kDa.

Characterization and Expression of Antibacterial Protein Gene, Nuecin (곤충세포주에서 누에신 단백질의 발현 및 성상구명)

  • 윤은영;구태원;황재삼;김상현;강석우;김근영;진병래
    • Journal of Sericultural and Entomological Science
    • /
    • v.44 no.2
    • /
    • pp.64-68
    • /
    • 2002
  • The antibacterial protein gene, nuecin was expressed in Sf9 cells using baculovirus expression vector system (BEVS). The antibactetial activity of mature nuecin against Pectobacterium carotovorum subsp. carotovorum, Ralstonia solanacearum and Pseudomonas tolaasii was significantly high, demonstrating that nuecin had a wider antibacterial spectrum on gram negative and positive bacteria. The result appears to be superior to other antibacterial peptide, attacin. The nuecin was purified by SP-sepharose and Mono Q HR ion-exchange chromatography, and then by Superdex 200 HR 10/30 column. The purified nuecin is quite stable at 80$\^{C}$ and 100$\^{C}$ for several hours of incubation and in a wide pH range (pH 2-12).

Bombyx mori protein disulfide isomerase enhances the production of nuecin, an antibacterial protein

  • Goo, Tae-Won;Yun, Eun-Young;Kim, Sung-Wan;Choi, Kwang-Ho;Kang, Seok-Woo;Kwon, Ki-Sang;Yu, Kweon;Kwon, O-Yu
    • BMB Reports
    • /
    • v.41 no.5
    • /
    • pp.400-403
    • /
    • 2008
  • The insect baculovirus expression vector system (BEVS) is useful for producing biologically active recombinant proteins. However, the overexpressions of foreign proteins using this system often results in misfolded proteins and the formation of protein aggregates. To overcome this limitation, we developed a versatile baculovirus expression and secretion system using Bombyx mori protein disulfide isomerase (bPDI) as a fusion partner. bPDI gene fusion was found to improve the secretions and antibacterial activities of recombinant nuecin proteins. Thus, we conclude that bPDI gene fusion is a useful addition to BEVS for the large-scale production of bioactive recombinant proteins.

Characterization of Spodoptera exigua Nuclear Polyhedrosis Virus Polyhedrin Gene Structure (파밤나방 핵다각체병 바이러스의 다각체 단백질 유전자 구조)

  • 최재영;김우진
    • Journal of Sericultural and Entomological Science
    • /
    • v.38 no.2
    • /
    • pp.144-149
    • /
    • 1996
  • To develope the baculovirus expression vector system (BEVS) using Spodoptera exigua nuclear polyhedrosis virus (SeNPV), we characterized the polyhedrin of SeNPV. The SeNPV polyhedra was irregular and composed of the major protein molecular weight of 30 kDa determined by electronmicroscopy and SDS-AGE analysis, respectively. The nucleotid suquences of 876 bases including the coding region of polyhedrin gene was determined and it was revealed that the polyhedrin gene is located within Xho I 3.0Kb and Nco I 6.0 Kb by Southern blot analysis, respectively. Also, the Xho I 3.0 Kb and the Nco I 6.0 Kb fragments were cloned and restriction enzyme map of these clones were determined.

  • PDF