• Title/Summary/Keyword: Bacterial reverse mutation

Search Result 64, Processing Time 0.029 seconds

Bacterial Reverse Mutation Assay of Xylooligosaccharide (Xylooligosaccharide의 복귀돌연변이 시험)

  • 오화균;박윤제;이운택;이지완;이창승;류보경;양창근;윤세왕;강부현
    • Journal of Food Hygiene and Safety
    • /
    • v.14 no.3
    • /
    • pp.259-264
    • /
    • 1999
  • To evaluate the bacterial reverse mutation of xylooligosaccharide(XO)s the in vitro Ames test using Salmonella typhimurium (TA9S, TAIOO, TA1535, TA1537) and Escherichia coli (WP2 uvrA) was performed. XO was negative in Ames test with Salmonella typhimurium and Escherichia coli with and without rat liver microsomal enzyme (S-9 fraction). According to the results, XO does not cause bacterial reverse mutation.

  • PDF

Safety Evaluation of Chrysanthemum indicum L. Flower Oil by Assessing Acute Oral Toxicity, Micronucleus Abnormalities, and Mutagenicity

  • Hwang, Eun-Sun;Kim, Gun-Hee
    • Preventive Nutrition and Food Science
    • /
    • v.18 no.2
    • /
    • pp.111-116
    • /
    • 2013
  • Chrysanthemum indicum is widely used to treat immune-related and infectious disorders in East Asia. C. indicum flower oil contains 1,8-cineole, germacrene D, camphor, ${\alpha}$-cadinol, camphene, pinocarvone, ${\beta}$-caryophyllene, 3-cyclohexen- 1-ol, and ${\gamma}$-curcumene. We evaluated the safety of C. indicum flower oil by conducting acute oral toxicity, bone marrow micronucleus, and bacterial reverse mutation tests. Mortality, clinical signs and gross findings of mice were measured for 15 days after the oral single gavage administration of C. indicum flower oil. There were no mortality and clinical signs of toxicity at 2,000 mg/kg body weight/day of C. indicum flower oil throughout the 15 day period. Micronucleated erythrocyte cell counts for all treated groups were not significantly different between test and control groups. Levels of 15.63~500 ${\mu}g$ C. indicum flower oil/plate did not induce mutagenicity in S. Typhimurium and E. coli, with or without the introduction of a metabolic activation system. These results indicate that ingesting C. indicum flower oil produces no acute oral toxicity, bone marrow micronucleus, and bacterial reverse mutation.

Lack of Mutagenicity Potential of Periploca sepium Bge. in Bacterial Reverse Mutation (Ames) Test, Chromosomal Aberration and Micronucleus Test in Mice

  • Zhang, Mei-Shu;Bang, In-Seok;Park, Cheol-Beom
    • Environmental Analysis Health and Toxicology
    • /
    • v.27
    • /
    • pp.14.1-14.6
    • /
    • 2012
  • Objectives: The root barks of Periploca sepium Bge. (P. sepium) has been used in traditional Chinese medicine for healing wounds and treating rheumatoid arthritis. However, toxicity in high-doses was often diagnosed by the presence of many glycosides. The potential mutagenicity of P. sepium was investigated both in vitro and in vivo. Methods: This was examined by the bacterial reverse mutation (Ames) test using Escherichia coli WP2uvrA and Salmonella typhimurium strains, such as TA98, TA100, TA1535, and TA1537. Chromosomal aberrations were investigated using Chinese hamster lung cells, and the micronucleus test using mice. Results: P. sepium did not induce mutagenicity in the bacterial test or chromosomal aberrations in Chinese hamster lung cells, although metabolic activation and micronucleated polychromatic erythrocytes were seen in the mice bone marrow cells. Conclusions: Considering these results, it is suggested that P. sepium does not have mutagenic potential under the conditions examined in each study.

Bacterial Reverse Mutation Test of 1,2,4-trimethylbenzene (1,2,4-trimethylbenzene의 미생물복귀돌연변이시험)

  • Kim, Soo-Jin;Cho, Hae-Won;Rim, Kyung-Taek;Maeng, Seung-Hee;Kim, Hyeon-Yeong
    • Environmental Analysis Health and Toxicology
    • /
    • v.21 no.4 s.55
    • /
    • pp.317-322
    • /
    • 2006
  • We have investigated the genotoxicity of 1,2,4-trimethylbenzene using Ames reverse mutation test. In Ames reverse mutation test, 1,2,4-trimethylbenzene treatment at the dose of 100, 50, 25, 12.5, $6.25{\mu}g/plate$ did not induce mutagenicity in Salmonella typhimurium TA98, TA100, TA1535, TA1537 and in Escherichia coli WP2uvrA with and without metabolic activation. These results indicate that 1,2,4-trimethylbenzene has no mutagenic potential under the rendition in this study.

Bacterial Reverse Mutation Test of Clean Natural using Salmonella typhimurium (천연소독제 Clean Natural의 Salmonella typhimurium에 대한 복귀돌연변이시험)

  • Chun Myung-Sun;Han Sang-Wook;Cho Yoon-Hee;Lim Yeong-Yun;Kim Eui-Gyung;Lee Hu-Jang
    • Journal of Food Hygiene and Safety
    • /
    • v.20 no.3
    • /
    • pp.175-178
    • /
    • 2005
  • Clean Natural is a new disinfectant of which main components are propolis and wood vinegar from Quercus mongolica. To evauate the bacterial reverse mutation of Clean Watural, the in vitro Ames test using Salmonella typhimurium TA98, TA100, TA102, TA1535 and TA1537 were performed with clean natural at the concentrations 0, 5, 2.5, and 1.25 mg/ml/plate. Clean Natural was negative in Ames test with Salmonella typhymuyium with and without rat liver microsomal enzyme (S-9 fraction). These results indicate that Clean Watural does not cause bacterial reverse mutation.

Bacterial Reverse Mutation Test of Wild Ginseng Culture Extract (산삼배양추출물의 세균을 이용한 복귀돌연변이시험)

  • Song Si-Whan;Yang Deok Chun;Choung Se Young
    • Journal of Food Hygiene and Safety
    • /
    • v.19 no.4
    • /
    • pp.193-197
    • /
    • 2004
  • To evaluate the bacterial reverse mutation of wild ginseng culture extract, the in vitro Ames test using Salmonella typhimurium (TA100, TA1,535, TA98, TA1,537) and Escherichia coli (WP2 uvrA) were performed with wild ginseng extract at the concentrations 0, 1.6, 8, 40, 200, 1,000, 2,500 and $5,000{\mu}g/ml/plate$. Wild ginseng culture extract was negative in Ames test with both Salmonella typhimurium or Escherichia coli with and without rat liver microsomal enzyme (S-9 fraction). According to these results, we concluded that wild ginseng culture extract did not cause bacterial reverse mutation.

Genotoxicity of Zizyphi Spinosi Semen in Bacterial Reverse Mutation (Ames) Test, Chromosomal Aberration and Micronucleus Test in Mice

  • Zhang, Mei-Shu;Bang, In-Seok;Kang, Chang-Su;Park, Cheol-Beom
    • Journal of Food Hygiene and Safety
    • /
    • v.27 no.2
    • /
    • pp.141-145
    • /
    • 2012
  • Zizyphi spinosi semen (Z. spinosi) has been used in traditional Chinese medicine for the treatment of rheumatoid arthritis and wounds. However, toxicity in high doses was often observed due to the presence of alkaloids. This study was conducted to investigate the potential genotoxicity of Z. spinosi in vitro and in vivo. This was examined by the Bacterial reverse mutation (Ames) test using Salmonella typhimurium TA98, TA100, TA1535, TA1537 and Escherichia coli WP2uvrA, Chromosomal aberration was investigated using Chinese hamster lung cells and the micronucleus test using mice. Z. Spinosi did not induce mutagenicity in the Ames test, and it did not produce chromosomal aberration in Chinese hamster lung cells with and without metabolic activation, nor in the micronucleated polychromatic erythrocytes in the bone marrow cells in mice. Based on these results, it is concluded that Z. spinosi does not have mutagenic potential under the conditions examined in each study.

Mutagenicity of Lithium Carbonate Assessed by Bacterial Reverse Mutation(Ames) Test (미생물복귀돌연변이(Ames)시험을 통한 탄산리튬의 변이원성 고찰)

  • Rim, Kyung-Taek;Kim, Soo-Jin
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.24 no.3
    • /
    • pp.330-335
    • /
    • 2014
  • Objectives: To evaluate the mutagenicity of lithium carbonate, a bacterial reverse mutation(Ames) test was carried out using four strains of S. typhimurium(TA1535; TA1537; TA98; and TA100) and one strain of E. coli(WP2uvrA). Materials: This was carried out in a dose range from 312.5 to $5,000{\mu}g/plate$ in triplicate with and without S9 activation, which is the most commonly used metabolic activation system supplemented by a post-mitochondrial fraction prepared from the livers of rodents treated with enzyme-inducing agents such as Aroclor 1254 or a combination of phenobarbitone and ${\beta}$-naphthoflavone. Results: No significant increases in the number of revertants were observed under the conditions examined in this study. Conclusions: Based on the above observations, it can be concluded that lithium carbonate has no mutagenic activity. Despite the results, it can have an effect by inducing acute oral toxicity, eye irritation and acute aquatic toxicity. Based on this study, we suggest that future studies should be directed toward chronic, carcinogenic testing and other related areas.

Genotoxicity Study of HM10411, Recombinant Human Granulocyte Colony Stimulating Factor (재조합 인과립구 콜로니 자극인자 HM10411의 유전독성 연구)

  • 권정;이미가엘;홍미영;조지희;정문구;권세창;이관순
    • Biomolecules & Therapeutics
    • /
    • v.10 no.4
    • /
    • pp.268-273
    • /
    • 2002
  • Mutagenic potential of HM10411 (recombinant human granulocyte colony stimulating factor) was evaluated by bacterial reverse mutation test, in vitro chromosome aberration test and in vivo micronucleus test. The bacterial reverse mutation test was performed using the histidine auxotroph strains of Salmonella typhimurium TA100, TA1535, TA98, TA1537 and tryptophan auxotroph strain of Escherichia coli WP2 uvrA. The negative results of the bacterial reverse mutation test suggest that HM10411 does not induce mutation, in the genome of Salmonella typhimurium and E. coli under the conditions used. In addition, it has little clastogenicity either in vitro chromosome aberration test or in vivo micronucleus test. For in vitro chromosomal aberration test, Chinese hamster lung(CHL) cells were exposed to HM10411 of 23, 46 or 92 $\mu\textrm{g}$/ml for 6 or 24 hours in the absence and for 6 hours in the presence of metabolic activation system. There was no significant increase in the number of aberrant metaphase in HM 10411-treated groups at any dose levels both in the presence and absence of metabolic activation system. The micronucleus test was carried out using specific pathogen free(SPF) 7-week old male ICR mice, The test item, HM10411 was intraperitoneally administered at 1150, 2300 or 4600 $\mu\textrm{g}$/kg once a day for 2 consecutive days. There was no significant increase in the frequencies of micronucleated polychromatic erythrocytes(PCEs) at any treated groups compared with negative control group. Therefore, these results demonstrate that the test item, HM10411, was not mutagenic under the condition of these studies.

Genotoxicity Study of Dimethyl Isophthalate in Bacterial and Mammalian Cell System

  • Chung, Young-Shin;Choi, Seon-A;Hong, Eun-Kyung;Ryu, Jae-Chun;Lee, Eun-Jung;Choi, Kyung-Hee
    • Molecular & Cellular Toxicology
    • /
    • v.3 no.1
    • /
    • pp.53-59
    • /
    • 2007
  • This study was conducted to evaluate the mutagenic potential of dimethyl isophthalate (DMIP) using Ames bacterial reverse mutation test, chromosomal aberration test and mouse lymphoma $tk^{+/-}$ gene assay. As results, in Ames bacterial reversion assay, DMIP was tested up to the concentration of 5,000 ${\mu}g$/plate and did not induce mutagenicity in Salmonella typhimurium strains TA98, TA100, TA1535 and TA1537, and Escherichia coli WP2uvrA with or without metabolic activation (S9 mix). Using cytotoxicity test, the maximal doses of DMIP for chromosomal aberration assay were determined at 1,250 ${\mu}g/mL$, which was a minimum precipitation concentration ($IC_{50}>1,940\;{\mu}g/mL$ or 10 mM) and at 155 ${\mu}g/mL$ ($IC_{50}:155\;{\mu}g/mL$) in the presence and the absence, respectively, of S9 mix. DMIP in the presence of S9 mix induced statistically significant (P<0.001) increases in the number of cells with chromosome aberrations at the dose levels of over 250 ${\mu}g/mL$, when compared with the negative control. However, DMIP in the absence of S9 mix did not caused significant induction in chromosomal aberrant cells. In MLA, DMIP at the dose range of 242.5-1,940 ${\mu}g/mL$ in the presence of S9 mix induced statistically significant increases in mutation frequencies related to small colony growth, whereas any significant mutation frequency was not observed in absence of S9 mix. From these results, it is conclusively suggested that dimethyl isophthalate may be a clastogen rather than a point mutagen.