• 제목/요약/키워드: Bacterial population

검색결과 526건 처리시간 0.037초

콩 잎에 서식하는 세균 및 콩나물 부패균의 밀도 변화 (Population Density Changes of Bacteria and Soybean Sprout Rotting Bacteria on Soybean Leaves)

  • 최재을;이은정;신철우
    • 한국자원식물학회지
    • /
    • 제12권2호
    • /
    • pp.152-160
    • /
    • 1999
  • 1. 콩잎의 세균밀도는 4.60$\times$$10^2$~ 9.10$\times$$10^{5}$CFU/$\textrm{cm}^2$으로, 생육단계가 진전됨에 따라 세균밀도가 증가하는 경향이었다. 2. 콩나물 부패 세균의 밀도는 콩잎에서 0~5.00$\times$$10^3$CFU/$\textrm{cm}^2$으로, 부패세균의 밀도는 생육단계에 관련이 없었으나 재배지역과는 관련이 있었다. 3. 나물 콩 품종과 콩나물 부패세균의 밀도는 품종과 관련이 적었으며 생육단계와 작물의 부위에 따라 변이가 심하였다. 4. 콩잎에서 분리된 콩나물 부패세균은 Erwinia cypripedii, E. carotovora subsp. carotovora, Xanthomonas campestris pv. glycines, Staphylococcus sp., Micrococcus sp. 이며, E. carotovora subsp. carotovora, X. campestris pv. glycines가 밀도가 높았다.다.

  • PDF

수도 흰잎마름병 저항성 유전자 발현에 관한 연구 I. 흰잎마름병균의 증식 및 이동과 저항성과의 관계 (Studies on Manifestation of Bacterial Leaf Blight Resistant Gene I. Relationship Between the Resistance of Rice to Bacterial Leaf Blight and the Multiplication and Spread of the Xanthomonas campestris pv. oryzae)

  • 김한용;최재을
    • 한국작물학회지
    • /
    • 제35권2호
    • /
    • pp.132-136
    • /
    • 1990
  • 수도 흰잎마름병(Xanthomonas campestris pv. oryzae) 병원세균(K1)의 조직내에서의 증식과 이동 그리고 수공을 통해 추출되는 병원세균의 농도를 조사한 결과를 요약하면 다음과 같다. 1. 저항성 품종에서는 접종 3일후에 약 $10^3$cfu/$\textrm{cm}^2$로 12일까지 큰 변화가 없었으나 리병성 품종에서는 접종 6일에 약 $10^4$cfu/$\textrm{cm}^2$에서 접종 12일에는 약 $10^{8}$-$10^{9}$cfu/$\textrm{cm}^2$로 계속 증식하였다. 2. 병원세균의 접종부위로부터 상, 하향 이동속도 및 증식속도는 상향이동이 약간 빠른 경향이었으며 리병성 품종에서 빠른 증식과 이동속도를 보여 저항성과 밀접한 관계가 있었다. 3. 병원세균의 증식 및 이동은 생육시기에 따른 차이는 없었다. 4. 감염된 잎의 수공을 통해 나오는 병원세균의 농도는 조직내에서 병원세균의 증식 및 이동과 일치하였으며 저항성과도 밀접한 관계가 있었다.

  • PDF

Effects of Antibiotics on the Uterine Microbial Community of Mice

  • Sang-Gyu Kim;Dae-Wi Kim;Hoon Jang
    • 한국발생생물학회지:발생과생식
    • /
    • 제26권4호
    • /
    • pp.145-153
    • /
    • 2022
  • The gut microbiota is involved in the maintenance of physiological homeostasis and is now recognized as a regulator of many diseases. Although germ-free mouse models are the standard for microbiome studies, mice with antibiotic-induced sterile intestines are often chosen as a fast and inexpensive alternative. Pathophysiological changes in the gut microbiome have been demonstrated, but there are no reports so far on how such alterations affect the bacterial composition of the uterus. Here we examined changes in uterine microbiota as a result of gut microbiome disruption in an antibiotics-based sterile-uterus mouse model. Sterility was induced in 6-week-old female mice by administration of a combination of antibiotics, and amplicons of a bacteria marker gene (16S rRNA) were sequenced to decipher bacterial community structures in the uterus. At the phylum-level, Proteobacteria, Firmicutes, and Actinobacteria were found to be dominant, while Ralstonia, Escherichia, and Prauserella were the major genera. Quantitative comparisons of the microbial contents of an antibiotic-fed and a control group revealed that the treatment resulted in the reduction of bacterial population density. Although there was no significant difference in bacterial community structures between the two animal groups, β-diversity analysis showed a converged profile of uterus microbiotain the germ-free model. These findings suggest that the induction of sterility does not result in changes in the levels of specific taxa but in a reduction of individual variations in the mouse uterus microbiota, accompanied by a decrease in overall bacterial population density.

Colonization and Population Changes of a Biocontrol Agent, Paenibacillus polymyxa E681, in Seeds and Roots

  • Park, Okhee;Kim, Jinwoo;Ryu, Choong-Min;Park, Chang-Seuk
    • The Plant Pathology Journal
    • /
    • 제20권2호
    • /
    • pp.97-102
    • /
    • 2004
  • Paenibacillus polymyxa E681, with its plant growth promotion and root colonization ability, has been proven to be a promising biocontrol agent of cucumber and barley. This study investigated the attributes related to the movement of bacteria from the seed to the radicle and to the whole root system. It also illustrated the existing form and population changes of the bacteria on seed and root using the scanning electron microscope and confocal laser scanning microscopy. The bacteria invaded and colonized the inside of the seed coat while the seeds were soaked in bacterial suspension. Almost the same number of bacteria on seed surface invaded the inside of the seed coat right after seed soaking. The population densities of E681 increased greatly inside as well as on the surface of the seed before the radicle emerged. The bacteria attached on the emerging radicle directly affected the initial population of newly emerg-ing root. The colonized cells on the root were arranged linearly toward the elongation of the root axis. In addition to colonizing the root surface, strain E681 was found inside the roots, where cells colonized the inter-cellular space between certain epidermal and cortical cells. When the cucumber seeds were soaked in bacterial suspension and sown in pot, the bacterial populations attached on both the surface and inside of the root were sustained up to harvesting time. This means that E681 successfully colonized the root of cucumber and sustained its population density up to harvesting time through seed treatment.

동해 연안역의 박테리아 생산력과 유기물질의 분해능 (Bacterial Productivity and Degradability of Organic Compounds in the Coastal Area of East Sea)

  • 이기성;고동규;김근호;이영근;최청일;최영길
    • 환경생물
    • /
    • 제17권1호
    • /
    • pp.59-69
    • /
    • 1999
  • 동해 연안역의 부영양화 상태 및 종속영양세균에 의한 유기물질 분해능을 조사하기 위해서 대진, 갈남, 포항, 울산의 4개 지역의 연안역을 대상으로 1994년 7월부터 1995년 4월까지 4회에 걸쳐 종속영양세균군집, 오염의 신호화합물, 세균의 생산력, 종속영양활성도 및 세포외 효소활성도 등을 분석하였다. 중금속내성균의 수는 포항에서 가장 높게 나타났으며, 각종 유기인을 이용하는 세균군집을 조사한 결과 유기인(C-P)화합물이 많이 포함될 것으로 예상되는 산업폐수, 가정하수 및 농업폐수 등이 많이 유입되는 정점에서 이들 유기인 화합물을 분해하고 산화 환원시키는 세균군집이 높게 나타났다. 이들 세균의 출현빈도는 산업폐수, 가정하수 그리고 농업용수의 유입예측지표로 활용될 수 있으리라 생각된다. 세포외 효소활성도는 울산 처용암에서 가장 높았으며 대진에서 가장 낮게 나타났다. 이러한 결과는 종속영양 세균수와 세균의 생산성 등과 정의 상관관계를 나타내었다. Poly-P와 DNA의 경우, 정점별로는 포항이 가장 높았고, 울산, 갈남, 대진 순으로 나타났다. 이는 종속영양세균의 분포양상과 매우 일치하는 것으로 조사되었다. 종속영양 활성도는 정점별, 계절별 변화가 매우 심하였다. 세균의 생산력은 하계에 가장 높고 추계와 동계에 낮았다가 춘계에 다시 높아지는 경향을 나타나 종속영양세균의 계절적 변화양상과 유사한 경향을 보였다. 결과적으로 세균의 군집, poly-P함량, 세균의 생산력, 종속영양활성도 및 세포외 효소활성도 등의 분석자료는 부영양화 상태 및 유기물질의 순환과정을 파악할 수 있는 지표로 이용될 수 있다.

  • PDF

세균의 적정밀도 인식을 통한 신호전달 및 신호전달 차단 연구 (Bacterial Quorum Sensing and Anti-Quorum Sensing)

  • 박순양;이정기
    • 한국미생물·생명공학회지
    • /
    • 제32권1호
    • /
    • pp.1-10
    • /
    • 2004
  • Many bacteria monitor their population density and control the expression of specialized gene sets in response to bacterial cell density based on a mechanism referred to as quorum sensing. In all cases, quorum sensing involves the production and detection of extracellular signaling molecules, auto inducers, as which Gram-negative and Gram-positive bacteria use most prevalently acylated homoserine lactones and processed oligo-peptides, respectively. Through quorum-sensing communication circuits, bacteria regulate a diverse array of physiological functions, including virulence, symbiosis, competence, conjugation, antibiotic production, motility, sporulation, and biofilm formation. Many pathogens have evolved quorum-sensing mechanisms to mount population-density-dependent attacks to over-whelm the defense responses of plants, animals, and humans. Since these AHL-mediated signaling mechanisms are widespread and highly conserved in many pathogenic bacteria, the disruption of quorum-sensing system might be an attractive target for novel anti-infective therapy. To control AHL-mediated pathogenicity, several promising strategies to disrupt bacterial quorum sensing have been reported, and several chemicals and enzymes have been also investigated for years. These studies indicate that anti-quorum sensing strategies could be developed as possible alternatives of antibiotics.

The Endo-β-1,4-Glucanase of Bacillus amyloliquefaciens Is Required for Optimum Endophytic Colonization of Plants

  • Fan, Xiaojing;Yang, Ruixian;Qiu, Sixin;Cai, Xueqing;Zou, Huasong;Hu, Fangping
    • Journal of Microbiology and Biotechnology
    • /
    • 제26권5호
    • /
    • pp.946-952
    • /
    • 2016
  • The eglS gene in Bacillus amyloliquefaciens encodes an endo-β-1,4-glucanase that belongs to glycosyl hydrolase family 5. In this study, a disruption mutant of gene eglS was constructed to examine its role in bacterial adaptation in plants. The mutant TB2k, eglS gene inactivated bacterial strain, was remarkably impaired in extracellular cellulase activity. When inoculated on Brassica campestris, the TB2k population was reduced by more than 60% compared with the wild-type strain in the root, stem, and leaf tissues. Overexpression of eglS in the wild-type strain increased the bacteria population in the plant tissues. Further studies revealed that the transcription level of eglS was correlated with bacterial population. These data demonstrate that endo-β-1,4-glucanase of B. amyloliquefaciens is required for its optimal endophytic colonization.

Differential Structural Responses of Ginseng Root Tissues to Different Initial Inoculum Levels of Paenibacillus polymyxa GBR-1

  • Jeon, Yong-Ho;Kim, Young-Ho
    • The Plant Pathology Journal
    • /
    • 제24권3호
    • /
    • pp.352-356
    • /
    • 2008
  • Root discs of 4-year-old ginseng, Panax ginseng C. A. Meyer, were inoculated with the higher($10^8$ colonyforming units(CFU)/ml) and lower($10^6\;or\;10^5$ CFU/ml) initial inoculum levels of a plant-growth promoting rhizobacterium(PGPR), Paenibacillus polymyxa GBR-1 to examine rot symptom development and bacterial population changes on the root discs. At the higher inoculum level, brown rot symptoms developed and expanded on the whole root discs in which the bacterial population increased continuously up to 4 days after inoculation. In light and electron microscopy, ginseng root cells on the inoculation sites were extensively decayed, which were characterized by dissolved cell walls and destructed cytoplasmic contents. However, no rot symptoms were developed and the bacterial population increased only during the initial two days of inoculation at the lower inoculum level($10^6$ CFU/ml) of P. polymyxa GBR-1. At the lower inoculum level($10^5$ CFU/ml), boundary layers with parallel periclinal cell divisions, structurally similar to wound periderm, were formed internal to the inoculation sites, beneath which the cells were intact containing numerous normal-looking starch granules and no disorganized cell organelles, suggesting that these structural features may be related to the suppression of symptom development, a histological defense mechanism.

Isolation and characterization of a lytic Salmonella Typhimurium-specific phage as a potential biofilm control agent

  • Su-Hyeon Kim;Mi-Kyung Park
    • 한국식품저장유통학회지
    • /
    • 제30권1호
    • /
    • pp.42-51
    • /
    • 2023
  • This study aimed to characterize a lytic Salmonella Typhimurium-specific (ST) phage and its biofilm control capability against S. Typhimurium biofilm on polypropylene surface. ST phage was isolated, propagated, and purified from water used in a slaughterhouse. The morphology of ST phage was observed via transmission electron microscopy. Its bactericidal effect was evaluated by determining bacterial concentrations after the phage treatment at various multiplicities of infection (MOIs) of 0.01, 1.0, and 100. Once the biofilm was formed on the polypropylene tube after incubation at 37℃ for 48 h, the phage was treated and its antibiofilm capability was determined using crystal violet staining and plate count method. The phage was isolated and purified at a final concentration of ~11 log PFU/mL. It was identified as a myophage with an icosahedral head (~104 nm) and contractile tail (~90-115 nm). ST phage could significantly decrease S. Typhimurium population by ~2.8 log CFU/mL at an MOI of 100. After incubation for 48 h, biofilm formation on polypropylene surface was confirmed with a bacterial population of ~6.9 log CFU/cm2. After 1 h treatment with ST phage, the bacterial population in the biofilm was reduced by 2.8 log CFU/cm2. Therefore, these results suggest that lytic ST phage as a promising biofilm control agent for eradicating S. Typhimurium biofilm formed on food contact surfaces.

하천 생태계에서 유기탄소 기질 제거에 조류와 세균의 공생작용이 미치는 영향 (Effect of Bacterial and Algal Symbiotic Reaction on the Removal of Organic Carbon in River Ecosystem)

  • 공석기;도시유끼나까지마
    • 환경위생공학
    • /
    • 제16권3호
    • /
    • pp.22-27
    • /
    • 2001
  • It have been investigated how algal and bacterial symbiotic reaction influences on removal of organic carbon in river ecosystem. And artificial experimentation apparatus was made for algae'and bacteia'culture as lab scale. Investigating and researching minutely the change of concentration of organic carbon substrate and the change of population density of algae'and of bacteria'with this artificial experimentation apparatus, the next results could be obtained. 1. Successful decrease of DOC(dissolved organic carbon) could not be expected unless algal and bacterial biomass floe was nut formed effectively and unless biosorption was not proceeded effectively in the very culture system in which artificial synthetic wastewater was supplied continuously at constant rate. 2. In conditions of culture liquid of 1335 glucnse mg/L(type 1) and of 267 glucose mg:L(type 2), the algal dominant species was always Chlorella vulgaris in both types in which artificial synthetic wastewater were supplied continuously at constant rate and algae population density was around maximum 107 cells/mL. 3. It was around 108 ~ 107 cells/mL that the population density of heterotrophic bacterium. In culture medium systems type 1 and type 2 in which artificial wastewater were supplied continuously at constant rate, the same density appeared initially when using the population density of Escherichia coli w 3110 as indirect indicator. And this density decreased rapidly till the culturing date 35 days were passed away, while this density increased with gentle slope after same date and then the trend of change at type 2 was more severe than one at type 1. 4. When seeing such a change of population density of Escherichia coli w 3110, the growth of heterotrophic bacterium appeared as survival instinct pattern of broader requirement of nutrient at condition of low concentration of organic carbon substrate than condition of high concentration of same substrate.

  • PDF