• Title/Summary/Keyword: Bacterial metabolites

Search Result 155, Processing Time 0.023 seconds

Study on Soluble Concentrate Formulation and Quality Control Techniques of a Microbial Insecticide "Bt-Plus" (미생물살충제 "비티플러스" 액상 제형화 및 품질 분석 기술에 관한 연구)

  • Eom, Seonghyeon;Park, Hyeonji;Kim, Kyusoon;Hong, Youkyeong;Park, Jiyeong;Choi, Bongki;Kim, Joonsung;Kim, Kunwoo;Kang, Moonsoo;Yang, Kyunghyung;Kim, Yonggyun
    • Korean journal of applied entomology
    • /
    • v.52 no.2
    • /
    • pp.115-123
    • /
    • 2013
  • A microbial insecticide "Bt-Plus" has been developed to enhance an insecticidal efficacy of an entomopathogenic bacterium, Bacillus thuringiensis (Bt). However, its wettable powder formulation is not preferred by farmers and industry producers due to relatively high cost. This study aimed to develop a soluble concentrate formulation of Bt-Plus. To this end, an optimal mixture ratio of two bacterial culture broths was determined to be 5:4 (v/v) of Bt and Xenorhabdus nematophila (Xn) along with 10% ethanol preservative. In addition, Bt broth was concentrated by 10 times to apply the mixture at 1,000 times fold dilution. The resulting liquid formulation was sprayed on cabbage crop field infested by late instar larvae of the diamondback moth, Plutella xylostella. The field assay showed about 77% control efficacy at 7 days after treatment, which was comparable to those of current commercial biopesticides targeting P. xylostella. For storage test in both low and room temperatures, the liquid formation showed a relatively stable control efficacy at least for a month. To develop a quality control technique to exhibit a stable control efficacy of Bt-Plus, Bt spore density ($5{\times}10^{11}$ spores/mL) and eight active component concentrations of Xn bacterial metabolites in the formulation products have been proposed in this study.

Antioxidant Activity of Native Korean Halophyte Extracts and Their Anti-biofilmActivity against Acinetobacter baumannii (한국 자생 염생식물 추출물의 항산화 활성 및 다재내성 Acinetobacter baumannii에 대한 항생물막 활성)

  • Eun Seong Lee;Jeong Woo Park;Ki Hwan Moon;Youngwan Seo
    • Journal of Life Science
    • /
    • v.33 no.12
    • /
    • pp.1015-1024
    • /
    • 2023
  • Antibiotics have greatly contributed to the treatment and prevention of bacterial diseases in humans, animals, and fish. However, antibiotic misuse has led to the emergence and spread of multidrug-resistant bacteria. In addition to antibiotic discovery research, efforts are being made to combat such multidrug-resistant bacteria using antimicrobial agents, antioxidants, host immune enhancement, probiotics, and bacteriophages, as well as various symptomatic therapies. To discover novel bioactive compounds, it is crucial to adopt approaches that incorporate fresh ideas, new targets, innovative techniques, and untapped resources. Halophytes are plants that grow in high-salt soils and are known to adapt to salt-induced stress through unique metabolic processes that produce secondary metabolites. This study aimed to investigate the effects of extracts of halophytes native to Korea on oxidative stress and to determine whether they exert inhibitory activity against biofilms, which are major pathogenic factors of infectious bacteria. The Acinetobacter baumannii strain ATCC 17978, a representative drug-resistant bacterium, was used to measure anti-biofilm activity. The results showed that Aster spathulifolius, Carex kobomugi, Rosa rugosa, and Asparagus cochinchiensis exerted strong antioxidant and anti-biofilm effects without affecting bacterial growth itself. The halophytes used in this study are promising candidates for the development of pharmaceutical agents with antioxidant and antimicrobial properties.

Brief Introduction of Research Progresses in Control and Biocontrol of Clubroot Disease in China

  • He, Yueqiu;Wu, Yixin;He, Pengfei;Li, Xinyu
    • 한국균학회소식:학술대회논문집
    • /
    • 2015.05a
    • /
    • pp.45-46
    • /
    • 2015
  • Clubroot disease of crucifers has occurred since 1957. It has spread to the whole China, especially in the southwest and nourtheast where it causes 30-80% loss in some fields. The disease has being expanded in the recent years as seeds are imported and the floating seedling system practices. For its effective control, the Ministry of Agriculture of China set up a program in 2010 and a research team led by Dr. Yueqiu HE, Yunnan Agricultural University. The team includes 20 main reseachers of 11 universities and 5 institutions. After 5 years, the team has made a lot of progresses in disease occurrence regulation, resources collection, resistance identification and breeding, biological agent exploration, formulation, chemicals evaluation, and control strategy. About 1200 collections of local and commercial crucifers were identified in the field and by artificiall inoculation in the laboratories, 10 resistant cultivars were breeded including 7 Chinese cabbages and 3 cabbages. More than 800 antagostic strains were isolated including bacteria, stretomyces and fungi. Around 100 chemicals were evaluated in the field and greenhouse based on its control effect, among them, 6 showed high control effect, especially fluazinam and cyazofamid could control about 80% the disease. However, fluzinam has negative effect on soil microbes. Clubroot disease could not be controlled by bioagents and chemicals once when the pathogen Plasmodiophora brassicae infected its hosts and set up the parasitic relationship. We found the earlier the pathogent infected its host, the severer the disease was. Therefore, early control was the most effective. For Chinese cabbage, all controlling measures should be taken in the early 30 days because the new infection could not cause severe symptom after 30 days of seeding. For example, a biocontrol agent, Bacillus subtilis Strain XF-1 could control the disease 70%-85% averagely when it mixed with seedling substrate and was drenching 3 times after transplanting, i.e. immediately, 7 days, 14 days. XF-1 has been deeply researched in control mechanisms, its genome, and development and application of biocontrol formulate. It could produce antagonistic protein, enzyme, antibiotics and IAA, which promoted rhizogenesis and growth. Its The genome was sequenced by Illumina/Solexa Genome Analyzer to assembled into 20 scaffolds then the gaps between scaffolds were filled by long fragment PCR amplification to obtain complet genmone with 4,061,186 bp in size. The whole genome was found to have 43.8% GC, 108 tandem repeats with an average of 2.65 copies and 84 transposons. The CDSs were predicted as 3,853 in which 112 CDSs were predicted to secondary metabolite biosynthesis, transport and catabolism. Among those, five NRPS/PKS giant gene clusters being responsible for the biosynthesis of polyketide (pksABCDEFHJLMNRS in size 72.9 kb), surfactin(srfABCD, 26.148 kb, bacilysin(bacABCDE 5.903 kb), bacillibactin(dhbABCEF, 11.774 kb) and fengycin(ppsABCDE, 37.799 kb) have high homolgous to fuction confirmed biosynthesis gene in other strain. Moreover, there are many of key regulatory genes for secondary metabolites from XF-1, such as comABPQKX Z, degQ, sfp, yczE, degU, ycxABCD and ywfG. were also predicted. Therefore, XF-1 has potential of biosynthesis for secondary metabolites surfactin, fengycin, bacillibactin, bacilysin and Bacillaene. Thirty two compounds were detected from cell extracts of XF-1 by MALDI-TOF-MS, including one Macrolactin (m/z 441.06), two fusaricidin (m/z 850.493 and 968.515), one circulocin (m/z 852.509), nine surfactin (m/z 1044.656~1102.652), five iturin (m/z 1096.631~1150.57) and forty fengycin (m/z 1449.79~1543.805). The top three compositions types (contening 56.67% of total extract) are surfactin, iturin and fengycin, in which the most abundant is the surfactin type composition 30.37% of total extract and in second place is the fengycin with 23.28% content with rich diversity of chemical structure, and the smallest one is the iturin with 3.02% content. Moreover, the same main compositions were detected in Bacillus sp.355 which is also a good effects biocontol bacterial for controlling the clubroot of crucifer. Wherefore those compounds surfactin, iturin and fengycin maybe the main active compositions of XF-1 against P. brassicae. Twenty one fengycin type compounds were evaluate by LC-ESI-MS/MS with antifungal activities, including fengycin A $C_{16{\sim}C19}$, fengycin B $C_{14{\sim}C17}$, fengycin C $C_{15{\sim}C18}$, fengycin D $C_{15{\sim}C18}$ and fengycin S $C_{15{\sim}C18}$. Furthermore, one novel compound was identified as Dehydroxyfengycin $C_{17}$ according its MS, 1D and 2D NMR spectral data, which molecular weight is 1488.8480 Da and formula $C_{75}H_{116}N_{12}O_{19}$. The fengycin type compounds (FTCPs $250{\mu}g/mL$) were used to treat the resting spores of P. brassicae ($10^7/mL$) by detecting leakage of the cytoplasm components and cell destruction. After 12 h treatment, the absorbencies at 260 nm (A260) and at 280 nm (A280) increased gradually to approaching the maximum of absorbance, accompanying the collapse of P. brassicae resting spores, and nearly no complete cells were observed at 24 h treatment. The results suggested that the cells could be lyzed by the FTCPs of XF-1, and the diversity of FTCPs was mainly attributed to a mechanism of clubroot disease biocontrol. In the five selected medium MOLP, PSA, LB, Landy and LD, the most suitable for growth of strain medium is MOLP, and the least for strains longevity is the Landy sucrose medium. However, the lipopeptide highest yield is in Landy sucrose medium. The lipopeptides in five medium were analyzed with HPLC, and the results showed that lipopeptides component were same, while their contents from B. subtilis XF-1 fermented in five medium were different. We found that it is the lipopeptides content but ingredients of XF-1 could be impacted by medium and lacking of nutrition seems promoting lipopeptides secretion from XF-1. The volatile components with inhibition fungal Cylindrocarpon spp. activity which were collect in sealed vesel were detected with metheds of HS-SPME-GC-MS in eight biocontrol Bacillus species and four positive mutant strains of XF-1 mutagenized with chemical mutagens, respectively. They have same main volatile components including pyrazine, aldehydes, oxazolidinone and sulfide which are composed of 91.62% in XF-1, in which, the most abundant is the pyrazine type composition with 47.03%, and in second place is the aldehydes with 23.84%, and the third place is oxazolidinone with 15.68%, and the smallest ones is the sulfide with 5.07%.

  • PDF

Production of Antimicrobial Compounds and Cloning of a dctA Gene Related Uptake of Organic Acids from a Biocontrol Bacterium Pseudomonas Chlororaphis O6 (생물적 방제균 Pseudomonas chlororaphis O6의 길항 물질 생산 및 유기산 흡수에 관련된 dctA 유전자의 클로닝)

  • Han, Song-Hee;Nam, Hyo-Song;Kang, Beom-Ryong;Kim, Kil-Yong;Koo, Bon-Sung;Cho, Baik-Ho;Kim, Young-Cheol
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.36 no.3
    • /
    • pp.134-144
    • /
    • 2003
  • A rhizobacterium Pseudomonas cholororaphis O6 produced several secondary metabolites, such as phenazines, protease, and HCN that may be involved in inhibition of the growth of phytopathogenic fungi. In field study, P. chlororaphis O6 treatment on wheat seed suppressed root rot disease caused by Fusarium culmorum. The major organic acids of cucumber root exudates were fumaric acid, malic acid, benzoic acid, and succinic acid. Glucose and fructose were major monosaccharides in cucumber root exudates. The total amount of organic acids was ten times higher than that of the sugars. P. chlororaphis O6 grew well on cucumber root exudates. The dctA gene of P. chlororaphis O6 consisted of a 1,335 bp open reading frame with a deduced amino acid sequence of 444 residues, corresponding to a molecular size of about 47 kD and pI 8.2. The deduced dctA sequence has ten putative transmembrane domains, as expected of a membrane-embedded protein. Our results indicated that organic acids in cucumber root exudates may play an important role in providing nutrient source for root colonization of biological control bacteria, and the dctA gene of P. chlororaphis O6 may be an important bacterial trait that is involved in utilization of root exudates.

Complete Genome Sequence and Antimicrobial Activities of Bacillus velezensis MV2 Isolated from a Malva verticillate Leaf (아욱 잎에서 분리한 Bacillus velezensis MV2의 유전체 염기서열 분석과 항균활성능 연구)

  • Lee, Hyeonju;Jo, Eunhye;Kim, Jihye;Moon, Keumok;Kim, Min Ji;Shin, Jae-Ho;Cha, Jaeho
    • Microbiology and Biotechnology Letters
    • /
    • v.49 no.1
    • /
    • pp.111-119
    • /
    • 2021
  • A bacterial strain isolated from a Malva verticillata leaf was identified as Bacillus velezensis MV2 based on the 16S rRNA sequencing results. Complete genome sequencing revealed that B. velezensis MV2 possessed a single 4,191,702-bp contig with 45.57% GC content. Generally, Bacillus spp. are known to produce diverse antimicrobial compounds including bacteriocins, polyketides, and non-ribosomal peptides. Antimicrobial compounds in the B. velezensis MV2 were extracted from culture supernatants using hydrophobic interaction chromatography. The crude extracts showed antimicrobial activity against both gram-positive bacteria and gram-negative bacteria; however, they were more effective against gram-positive bacteria. The extracts also showed antifungal activity against phytopathogenic fungi such as Fusarium fujikuroi and F. graminearum. In time-kill assays, these antimicrobial compounds showed bactericidal activity against Bacillus cereus, used as indicator strain. To predict the type of antimicrobial compounds produced by this strain, we used the antiSMASH algorithm. Forty-seven secondary metabolites were predicted to be synthesized in MV2, and among them, fourteen were identified with a similarity of 80% or more with those previously identified. Based on the antimicrobial properties, the antimicrobial compounds may be nonribosomal peptides or polyketides. These compounds possess the potential to be used as biopesticides in the food and agricultural industry as an alternative to antibiotics.