• 제목/요약/키워드: Bacterial Nitrogen

검색결과 468건 처리시간 0.03초

실제 하수조건에서 조류-세균 복합군집의 생태적 상호작용 및 영양염류 제거 특성 규명 (Characterization of Algal-Bacterial Ecological Interaction and Nutrients Removal Under Municipal Wastewater Condition)

  • 이장호;박준홍
    • 대한환경공학회지
    • /
    • 제33권5호
    • /
    • pp.314-324
    • /
    • 2011
  • 하수를 이용해서 배양된 조류는 바이오디젤 생산에 유용한 자원이다. 그러나 실제 하수에서 조류의 영양염류 신진대사와 하수 세균과의 상호작용에 관한 연구는 미흡하다. 본 연구에서는 하수로 배양되는 대표적 조류균주인 Ankistrodesmus gracilis SAG 278-2에 의한 하수 내 질소, 인 제거 거동을 평가하였고, 조류와 상호작용하는 하수 내의 세균 군집을 분석하였다. 하수 슬러지 세균 군집과 비교하였을 때, 조류-세균 복합 군집은 하수 내보다 높은 영양염류 제거를 보였다. 16S rRNA 유전자 분석 결과, 조류-세균 군집에서 조류가 성장함에 따라 Unclassified Alcaligenaceae 세균이 선택적으로 우점됨을 알 수 있었고, 조류에 의해서 선택적으로 우점화된 하수세균은 자연 수질 환경에서 조류와 공생적으로 상호작용 하는 것으로 알려진 Alcaligenes faecalis subsp. 5659-H와 계통학적으로 가까운 것으로 밝혀졌다. 본 연구의 결과, 하수 내의 높은 영양염류 제거를 보이는 조류-세균 복합 군집에서의 조류의 성장 및 신진대사가 특정 세균의 분포에 영향을 주는 것을 알 수 있었다.

국내산 시판 어리굴(Crassostrea gigas)젓의 미생물학적 평가 (Microbiological Evaluation of Commercial Eorigul-jeot, Salt-fermented Oyster Crassostrea gigas with Seasoning, Produced in Korea)

  • 소재원;이신혜;박권삼
    • 한국수산과학회지
    • /
    • 제57권2호
    • /
    • pp.122-128
    • /
    • 2024
  • We investigated the quality of 10 commercial eorigul-jeot, salt-fermented oysters with seasoning, by measuring their chemical composition and bacterial concentrations. The Eorigul-jeot had 5.07-6.06 pH (mean, 5.63), of 1.92-4.74% salinity (mean, 3.36%), 7.01-14.70 mg/100 g volatile basic nitrogen (mean, 11.91 mg/100 g), 139.22-267.11 mg/100 g amino acid nitrogen (mean, 212.69 mg/100 g), and 1.02-1.65 g/100 g total acidity (mean, 1.24 g/100 g). The total viable and lactic acid bacterial counts were 5.7×104-8.7×105 and 2.7×103-2.0×105 CFU/g, respectively, and fecal coliform was detected in only one Eorigul-jeot sample. Bacillus cereus and Clostridium perfringens were detected in two samples, and all Eorigul-jeot samples were negative for Staphylococcus aureus and Vibrio parahaemolyticus. These results strongly suggest the need to monitor food-poisoning bacteria in commercial Eorigul-jeot to ensure consumer health.

Microbial Structure and Community of RBC Biofilm Removing Nitrate and Phosphorus from Domestic Wastewater

  • Lee, Han-Woong;Choi, Eui-So;Yun, Zu-Whan;Park, Yong-Keun
    • Journal of Microbiology and Biotechnology
    • /
    • 제18권8호
    • /
    • pp.1459-1469
    • /
    • 2008
  • Using a rotating biological contactor modified with a sequencing bath reactor system (SBRBC) designed and operated to remove phosphate and nitrogen [58], the microbial community structure of the biofilm from the SBRBC system was characterized based on the extracellular polymeric substance (EPS) constituents, electron microscopy, and molecular techniques. Protein and carbohydrate were identified as the major EPS constituents at three different biofilm thicknesses, where the amount of EPS and bacterial cell number were highest in the initial thickness of 0-100${\mu}m$. However, the percent of carbohydrate in the total amount of EPS decreased by about 11.23%, whereas the percent of protein increased by about 11.15% as the biofilm grew. Thus, an abundant quantity of EPS and cell mass, as well as a specific quality of EPS were apparently needed to attach to the substratum in the first step of the biofilm growth. A FISH analysis revealed that the dominant phylogenetic group was $\beta$- and $\gamma$-Proteobacteria, where a significant subclass of Proteobacteria for removing phosphate and/or nitrate was found within a biofilm thickness of 0-250${\mu}m$. In addition, 16S rDNA clone libraries revealed that Klebsiella sp. and Citrobacter sp. were most dominant within the initial biofilm thickness of 0-250${\mu}m$, whereas sulfur-oxidizing bacteria, such as Beggiatoa sp. and Thiothrix sp., were detected in a biofilm thickness over 250${\mu}m$. The results of the bacterial community structure analysis using molecular techniques agreed with the results of the morphological structure based on scanning electron microscopy. Therefore, the overall results indicated that coliform bacteria participated in the nitrate and phosphorus removal when using the SBRBC system. Moreover, the structure of the biofilm was also found to be related to the EPS constituents, as well as the nitrogen and phosphate removal efficiency. Consequently, since this is the first identification of the bacterial community and structure of the biofilm from an RBC simultaneously removing nitrogen and phosphate from domestic wastewater, and it is hoped that the present results may provide a foundation for understanding nitrate and phosphate removal by an RBC system.

Soil development and bacterial community shifts along the chronosequence of the Midtre Lovénbreen glacier foreland in Svalbard

  • Kwon, Hye Young;Jung, Ji Young;Kim, Ok-Sun;Laffly, Dominique;Lim, Hyoun Soo;Lee, Yoo Kyung
    • Journal of Ecology and Environment
    • /
    • 제38권4호
    • /
    • pp.461-476
    • /
    • 2015
  • Global warming has accelerated glacial retreat in the high Arctic. The exposed glacier foreland is an ideal place to study chronosequential changes in ecosystems. Although vegetation succession in the glacier forelands has been studied intensively, little is known about the microbial community structure in these environments. Therefore, this study focused on how glacial retreat influences the bacterial community structure and its relationship with soil properties. This study was conducted in the foreland of the Midtre Lovénbreen glacier in Svalbard (78.9°N). Seven soil samples of different ages were collected and analyzed for moisture content, pH, soil organic carbon and total nitrogen contents, and soil organic matter fractionation. In addition, the structure of the bacterial community was determined via pyrosequencing analysis of 16S rRNA genes. The physical and chemical properties of soil varied significantly along the distance from the glacier; with increasing distance, more amounts of clay and soil organic carbon contents were observed. In addition, Cyanobacteria, Firmicutes, and Actinobacteria were dominant in soil samples taken close to the glacier, whereas Acidobacteria were abundant further away from the glacier. Diversity indices indicated that the bacterial community changed from homogeneous to heterogeneous structure along the glacier chronosequence/distance from the glacier. Although the bacterial community structure differed on basis of the presence or absence of plants, the soil properties varied depending on soil age. These findings suggest that bacterial succession occurs over time in glacier forelands but on a timescale that is different from that of soil development.

Influence of Electric Potential on Structure and Function of Biofilm in Wastewater Treatment Reactor : Bacterial Oxidation of Organic Carbons Coupled to Bacterial Denitrification

  • NA BYUNG KWAN;SANG BYUNG IN;PARK DAE WON;PARK DOO HYUN
    • Journal of Microbiology and Biotechnology
    • /
    • 제15권6호
    • /
    • pp.1221-1228
    • /
    • 2005
  • Carbon electrode was applied to a wastewater treatment system as biofilm media. The spatial distribution of heterotrophic bacteria in aerobic wastewater biofilm grown on carbon electrode was investigated by scanning electron microscopy, atomic force microscopy, and biomass measurement. Five volts of electric oxidation and reduction potential were charged to the carbon anode and cathode of the bioelectrochemical system, respectively, but were not charged to electrodes of a conventional system. To correlate the biofilm architecture of bacterial populations with their activity, the bacterial treatment efficiency of organic carbons was measured in the bioelectrochemical system and compared with that in the conventional system. In the SEM image, the biofilm on the anodic medium of the bioelectrochemical system looked intact and active; however, that on the carbon medium of the conventional system appeared to be shrinking or damaging. In the AFM image, the thickness of biofilm formed on the carbon medium was about two times of those on the anodic medium. The bacterial treatment efficiency of organic carbons in the bioelectrochemical system was about 1.5 times higher than that in the conventional system. Some denitrifying bacteria can metabolically oxidize $H_{2}$, coupled to reduction of $NO_{3}^{-}\;to\;N_{2}$. $H_{2}$ was produced from the cathode in the bioelectrochemical system by electrolysis of water but was not so in the conventional system. The denitrification efficiency was less than $22\%$ in the conventional system and more than $77\%$ in the bioelectrochemical system. From these results, we found that the electrochemical coupling reactions between aerobic and anaerobic reactors may be a useful tool for improvement of wastewater treatment and denitrification efficiency, without special manipulations such as bacterial growth condition control, C/N ratio (the ratio of carbon to nitrogen) control, MLSS returning, or biofilm refreshing.

An investigation on fermentative profile, microbial numbers, bacterial community diversity and their predicted metabolic characteristics of Sudangrass (Sorghum sudanense Stapf.) silages

  • Wang, Siran;Li, Junfeng;Zhao, Jie;Dong, Zhihao;Shao, Tao
    • Animal Bioscience
    • /
    • 제35권8호
    • /
    • pp.1162-1173
    • /
    • 2022
  • Objective: This study aimed to investigate the fermentation profiles, bacterial community and predicted metabolic characteristics of Sudangrass (Sorghum sudanense Stapf.) during ensiling. Methods: First-cutting Sudangrass was harvested at the vegetative stage and ensiled in laboratory-scale silos (1 L capacity). Triplicate silos were sampled after 1, 3, 7, 15, 30, and 60 days of ensiling, respectively. The bacterial communities on day 3 and 60 were assessed through high-throughput sequencing technology, and 16S rRNA-gene predicted functional profiles were analyzed according to the Kyoto encyclopedia of genes and genomes using Tax4Fun. Results: The Sudangrass silages showed good fermentation quality, indicated by higher lactic acid contents, and lower pH, butyric acid and ammonia nitrogen contents. The dominant genus Lactococcus on day 3 was replaced by Lactobacillus on day 60. The metabolism of amino acid, energy, cofactors and vitamins was restricted, and metabolism of nucleotide and carbohydrate was promoted after ensiling. The 1-phosphofructokinase and pyruvate kinase of bacterial community seemed to play important roles in stimulating the lactic acid fermentation, and the promotion of arginine deiminase could help lactic acid bacteria to tolerate the acidic environment. Conclusion: High-throughput sequencing technology combined with 16S rRNA gene-predicted functional analyses revealed the differences during the early and late stages of Sudangrass ensiling not only for distinct bacterial community but also for specific functional metabolites. The results could provide a comprehensive insight into bacterial community and metabolic characteristics to further improve the silage quality.

Predicted functional analysis of rumen microbiota suggested the underlying mechanisms of the postpartum subacute ruminal acidosis in Holstein cows

  • Yoshiyuki Tsuchiya;Ena Chiba;Atsushi Kimura;Kenji Kawashima;Toshiya Hasunuma;Shiro Kushibiki;Yo-Han Kim;Shigeru Sato
    • Journal of Veterinary Science
    • /
    • 제24권2호
    • /
    • pp.27.1-27.15
    • /
    • 2023
  • Background: The relationships between the postpartum subacute ruminal acidosis (SARA) occurrence and predicted bacterial functions during the periparturient period are still not clear in Holstein cows. Objectives: The present study was performed to investigate the alterations of rumen fermentation, bacterial community structure, and predicted bacterial functional pathways in Holstein cows. Methods: Holstein cows were divided into the SARA (n = 6) or non-SARA (n = 4) groups, depending on whether they developed SARA during the first 2 weeks after parturition. Reticulo-ruminal pH was measured continuously during the study period. Reticulo-ruminal fluid samples were collected 3 weeks prepartum, and 2 and 6 weeks postpartum, and blood samples were collected 3 weeks before, 0, 2, 4 and 6 weeks postpartum. Results: The postpartum decline in 7-day mean reticulo-ruminal pH was more severe and longer-lasting in the SARA group compared with the non-SARA group. Changes in predicted functional pathways were identified in the SARA group. A significant upregulation of pathway "PWY-6383" associated with Mycobacteriaceae species was identified at 3 weeks after parturition in the SARA group. Significantly identified pathways involved in denitrification (DENITRIFICATION-PWY and PWY-7084), detoxification of reactive oxygen and nitrogen species (PWY1G-0), and starch degradation (PWY-622) in the SARA group were downregulated. Conclusions: The postpartum SARA occurrence is likely related to the predicted functions of rumen bacterial community rather than the alterations of rumen fermentation or fluid bacterial community structure. Therefore, our result suggests the underlying mechanisms, namely functional adaptation of bacterial community, causing postpartum SARA in Holstein cows during the periparturient period.

Effect of R. leguminisarum Pre-incubated with Inducers, Naringenin and Methyl-jasmonate, on Nitrogen Fixation and the Growth of Pea at Different Salinity Levels

  • Lee, Kyung-Dong
    • 한국환경농학회지
    • /
    • 제27권4호
    • /
    • pp.362-367
    • /
    • 2008
  • The legume-rhizobia symbiosis is an important source of plant growth and nitrogen fixation for many agricultural systems. This study was conducted to investigate the effects of salinity stress on nitrogen fixation and growth of pea (Pisum sativum L.), which has antimutagenic activities against chemical mutagen, inoculated with R. leguminosarum bv. viciae cultured with additional plant-to-rhizobia signal compounds, naringenin (NA,15 uM), methyl-jasmonate (MJ, 50 uM) or both, under greenhouse conditions. Three salinity levels (0.6, 3.0 and $6.0\;dS\;m^{-1}$) were imposed at 3 days after transplanting and maintained through daily irrigations. Addition of signal compounds under non-stress and stress conditions increased dry weight, nodule numbers, leaf area and leaf greenness. The inducers increased photosynthetic rate under non-stress and stress conditions, by approximately 5-20% when compared to that of the non-induced control treatment. Under stress conditions, proline content was less in plants treated with plant-to-bacteria signals than the control, but phenol content was significantly increased, compared to that of the control. The study suggested that pre-incubation of bacterial cells with plant-to-bacteria signals could enhance pea growth, photosynthesis, nitrogen fixation and biomass under salinity stress conditions.

돈분 액비의 아산화질소 발생 저감 효과 검정 (Verification of the Effect of Liquefied Pig Manure on Reducing Nitrous Oxide Generation)

  • 이평호;백지현;구연종
    • 한국환경농학회지
    • /
    • 제42권4호
    • /
    • pp.418-426
    • /
    • 2023
  • This study focused on nitrous oxide, a major greenhouse gas produced in agricultural settings through bacterial nitrogen oxidation in aerobic soil. Nitrogen fertilizer in farmland is identified as a primary source of nitrous oxide. The importance of reducing excess nitrogen in soil to mitigate nitrous oxide production is well-known. The study investigated the use of liquefied pig manure as an alternative to urea fertilizer in conventional agriculture. Results showed a more than two-fold reduction in nitrous oxide emissions in pepper cultivation areas with liquefied pig manure compared to that with urea fertilizer. The population of Nitrosospira, a nitrous oxide-producing bacterium, decreased by over 10% with liquefied pig manure. Additionally, nirK and nosZ, which are related to the denitrification process, significantly increased in the urea fertilizer group, whereas levels in the liquefied pig manure group resembled those with no nitrogen treatment. In conclusion, the experiment confirmed that liquefied pig manure can serve as an eco-friendly nitrogen fertilizer, significantly reducing nitrous oxide production, a major contributor to the atmospheric greenhouse effect.

Nitrogen Sources Inhibit Biofilm Formation by Xanthomonas oryzae pv. oryzae

  • Ham, Youngseok;Kim, Tae-Jong
    • Journal of Microbiology and Biotechnology
    • /
    • 제28권12호
    • /
    • pp.2071-2078
    • /
    • 2018
  • Xanthomonas oryzae pv. oryzae (Xoo) causes bacterial blight, which results in severe economic damage to rice farms. Xoo produces biofilms for pathogenesis and survival both inside and outside the host. Biofilms, which are important virulence factors, play a key role in causing the symptoms of Xoo infection. In the present study, we investigated the nutritional conditions for biofilm formation by Xoo. Although Xoo biofilm formation may be initiated by interactions with the host, Xoo biofilm cannot mature without the support of favorable nutritional conditions. Nitrogen sources inhibited Xoo biofilm formation by overwhelming the positive effect that cell growth has on it. However, limited nutrients with low amino acid concentration supported biofilm formation by Xoo in the xylem sap rather than in the phloem sap of rice.