• 제목/요약/키워드: Bacterial Motility

검색결과 73건 처리시간 0.027초

돼지 액상 정액의 보관일수에 따른 오염 정도가 체외 수정란 생산 효율에 미치는 영향 (Effects of Bacterial Contamination of Extended Boar Semen Preservation Periods on Embryo Production In Vitro)

  • 김연수;이현택;김인철;유재원;김철욱;정기화
    • 한국수정란이식학회지
    • /
    • 제21권4호
    • /
    • pp.345-351
    • /
    • 2006
  • 본 연구는 항생제가 첨가되지 않은 돼지 혼합액상 정액을 17$^{\circ}C$ 정액 보관고에 보관하면서 보관일수의 증가가 따라 정자의 운동성, 정액 내 세균의 증식 여부 및 체외 수정란 생산 효율에 미치는 영향을 조사하고자 하였다. 정자의 운동성은 1일 (78.7$\pm$2.4%)에 비하여 3일(78.7$\pm$2.4%)과 5일째(64.8$\pm$2.4%)는 유의적으로(p<0.05) 낮은 운동성을 나타내었다. 보관일수에 따른 정액 내 세균수의 변화는 보관 5일이 $57.8\pm105.2\times10^4$ Cfu로 0일과 3일의 $32.1\pm76.8\times10^4$ Cfu와 $26.9\pm46.6\times10^4$ Cfu에 비하여 유의적인(p<0.05)증가를 나타내었다. 보관된 정액을 이용하여 체외 수정한 결과, 정상적인 수정(2PN)은 1일과 3일째의 66.0$\pm$2.7%와 64.0$\pm$2.7%에 비하여 5일째에는 56.0$\pm$2.6%로 유의적인(p<0.05) 차이를 나타내었다. 체외 수정란의 발달율에서 난할율은 1일째의 75.0$\pm$l.4%에 비하여 3일과 5일째는 70.0$\pm$0.3%와 71.0$\pm$0.3%로 유의적으로(p<0.05) 낮게 나타났으며, 상실배로의 발달율에 있어서 1일째는 32.0$\pm$1.4%의 발달율을 보였으나 3일과 5일째에는 28.0$\pm$1.3%와 24.0$\pm$1.3%로 유의적인(p<0.05) 감소치를 나타내었고, 배반포로의 발달율에 있어서도 1일에 15.0$\pm$1.0%에 비하여 3일과 5일은 11.0$\pm$0.9%와 8.0$\pm$0.9%로 유의적으로(p<0.05) 낮은 발달율을 나타내었다. 이상의 결과를 종합할 때 항생제가 첨가되지 않은 돼지 혼합 정액은 보관일수 3일째부터 정자의 운동성이 감소하고 세균수는 증가하였다. 또한 보존된 정액을 이용하여 체외 수정을 실시할 경우, 보관일수가 증가할수록 정상 수정율과 체외 발달율이 감소함으로 항생제를 첨가하지 않는 경우 3일 이상 정액을 보관하여 사용하지 않는 것이 바람직 하다고 사료된다.

Agar를 분해하는 swarming 박테리아 균주의 특성과 동정 (Characterization and Identification of an Agar-Degrading Motile Bacteria Strain)

  • 강성완;유아영;유종언;강호영
    • 생명과학회지
    • /
    • 제22권2호
    • /
    • pp.259-265
    • /
    • 2012
  • 환경에서 분리된 CK214 균주는 1.5% (w/v) agar가 포함되어 있는 LB 평판배지에서 빠르게 이동하는 특징을 가지며, agar 고체평판배지 위의 CK214 균주의 집락 주위로 움푹한 투명환이 관찰되었다. 이 균주는 단일 탄소원으로 agar만이 첨가된 최소 배지에서 잘 자랐으며, DNS 법을 이용하여 CK214 균주의 외부추출성분이 agar 분해활성을 가진다는 것을 확인하였다. CK214 균주는 다양한 농도의 agar (0.5, 1.0, 1.5 2.0% w/v)가 포함된 고체평판 배지에서 swarming 운동을 하였다. CK214 균주를 동정하기 위해 그람염색과 현미경 관찰, 생화학적 분석(API), 16S rRNA 염기서열분석에 기초한 계통발생학적 분석을 수행하였다. 이를 통해 CK214 균주는 그람 양성의 간균으로, Paenibacillus 속에 포함되었으며 Paenibacillus lactis MB 2035와 가장 가까운 연관성을 보이는 것을 확인할 수 있었다. 또한 CK214 균주는 agar 고체표면에서 주모성의 편모를 형성하는 것을 투과 전자 현미경(TEM)을 통해 관찰하였다. CK214 균주의 agarase 활성과 운동성의 연관성에 관한 앞으로의 연구를 위해 transposon random mutagenesis에 의한 agar 분해활성 결손 돌연변이주를 구축하였다.

Investigation of Quorum Sensing-Dependent Gene Expression in Burkholderia gladioli BSR3 through RNA-seq Analyses

  • Kim, Sunyoung;Park, Jungwook;Choi, Okhee;Kim, Jinwoo;Seo, Young-Su
    • Journal of Microbiology and Biotechnology
    • /
    • 제24권12호
    • /
    • pp.1609-1621
    • /
    • 2014
  • The plant pathogen Burkholderia gladioli, which has a broad host range that includes rice and onion, causes bacterial panicle blight and sheath rot. Based on the complete genome sequence of B. gladioli BSR3 isolated from infected rice sheaths, the genome of B. gladioli BSR3 contains the luxI/luxR family of genes. Members of this family encode N-acyl-homoserine lactone (AHL) quorum sensing (QS) signal synthase and the LuxR-family AHL signal receptor, which are similar to B. glumae BGR1. In B. glumae, QS has been shown to play pivotal roles in many bacterial behaviors. In this study, we compared the QS-dependent gene expression between B. gladioli BSR3 and a QS-defective B. gladioli BSR3 mutant in two different culture states (10 and 24 h after incubation, corresponding to an exponential phase and a stationary phase) using RNA sequencing (RNA-seq). RNA-seq analyses including gene ontology and pathway enrichment revealed that the B. gladioli BSR3 QS system regulates genes related to motility, toxin production, and oxalogenesis, which were previously reported in B. glumae. Moreover, the uncharacterized polyketide biosynthesis is activated by QS, which was not detected in B. glumae. Thus, we observed not only common QS-dependent genes between B. glumae BGR1 and B. gladioli BSR3, but also unique QS-dependent genes in B. gladioli BSR3.

황토로부터 분리한 Bacillus licheniformis의 항진균 chitinase 생산과 효소 특성 (Production and Characterization of Antifungal Chitinase of Bacillus licheniformis Isolated from Yellow Loess)

  • 한귀환;봉기문;김종민;김평일;김시욱
    • KSBB Journal
    • /
    • 제29권3호
    • /
    • pp.131-138
    • /
    • 2014
  • In this study, we isolated two novel chitinase producing bacterial strains from yellow loess samples collected from Jullanamdo province. The chitinase producing bacteria were isolated based on the zone size of clearance in the chitin agar plates. Both of them were gram positive, rod ($2{\sim}3{\times}0.3{\sim}0.4{\mu}m$), spore-forming, and motility positive. They were facultative anaerobic, catalase positive and hydrolyzed starch, gelatin, and casein. From the 16s rRNA gene sequence analysis, the isolates were labeled as Bacillus licheniformis KYLS-CU01 and B. licheniformis KYLS-CU02. The isolates showed higher extracellular chitinase activities than B. licheniformis ATCC 14580 as a control. The optimum temperature and pH for chitinase production were $40^{\circ}C$ and pH 7.0, respectively. Response Surface Methodology (RSM) was used to optimize the culture medium for efficient production of the chitinase. Under this optimal condition, 1.5 times higher chitinase activity of B. licheniformis KYLS-CU02 was obtained. Extracellular chitinases of the two isolates were purified through ammonium sulfate precipitation and anion-exchange DEAE-cellulose column chromatography. The specific activities of purified chitinase from B. licheniformis KYLS-CU01 and B. licheniformis KYLS-CU02 were 7.65 and 5.21 U/mg protein, respectively. The molecular weights of the two purified chitinases were 59 kDa. Further, the purified chitinase of B. licheniformis KYLS-CU01 showed high antifungal activity against Fusarium sp.. In conclusion, these two bacterial isolates can be used as a biopesticide to control pathogenic fungi.

광합성세균 Rhodobater capsulatus PS-2의 대량배양 최적화 및 대사산물 분석 (Mass Cultivation and Secondary Metabolite Analysis of Rhodobacter capsulatus PS-2)

  • 봉기문;김종민;유재홍;박인철;이철원;김평일
    • KSBB Journal
    • /
    • 제31권3호
    • /
    • pp.158-164
    • /
    • 2016
  • Plant growth promoting (PGP) hormones, which are produced in a small quantity by bacteria, affect in plant growth and development. PGPs play an important role on the crop productivity in agricultural field. In this study, a photosynthetic bacterial strain producing the PGP was isolated from paddy soil. Bacterial isolate was gram negative, rod-shaped and motility positive. From the 16s rRNA gene sequence analysis, the isolate was identified as Rhodobacter capsulatus PS-2. The mass cultivation of R. capsulatus PS-2 was optimized by considering of the carbon, nitrogen and inorganic salt sources. Optimal medium composition was determined as Na-succinate 4.5 g, yeast extract 5 g, $K_2HPO_4$ 1 g, $MgSO_4$ 5 g, per liter. From the result of 500 L fermentation for 2 days using the optimal medium, the viable cells were $8.7{\times}10^9cfu/mL$. R. capsulatus PS-2 strain produced the carotenoid and indole-3-acetic acid (IAA). The carotenoid extraction and quantitative analysis were performed by HCl-assisting method. Total carotenoid contents from R. capsulatus PS-2 culture broth were measured as $7.02{\pm}0.04$ and $6.93{\pm}0.05mg/L$ under photoheterotrophic and chemoheterotrophic conditions, respectively. To measure the productivity of IAA, colorimetric method was employed using Salkowski reagent at optical density 535 nm. The results showed that the highest content of IAA was $197.44{\pm}5.92mg/L$ in the optimal medium supplemented with 0.3% tryptophan.

유체역학적 집속 효과를 이용한 단일 박테리아 주화성의 정량적 분석 (Quantitative Analysis of Single Bacterial Chemotaxis Using a Hydrodynamic Focusing Channel)

  • 전호정;이용구;진송완;구상모;이창수;유정열
    • 대한기계학회논문집B
    • /
    • 제31권3호
    • /
    • pp.209-216
    • /
    • 2007
  • Bacterial chemotaxis is essential to the study of structure and function of bacteria. Although many studies have accumulated the knowledge about chemotaxis in the past, the motion of a single bacterium has not been studied much yet. In this study, we have developed a device microfabricated by soft lithography and consisting of microfluidic channels. The microfluidic assay generates a concentration gradient of chemoattractant linearly in the main channel by only diffusion of the chemicals. Bacteria are injected into the main channel in a single row by hydrodynamic focusing technique. We measured the velocity of bacteria in response to a given concentration gradient of chemoattractant using the microfludic assay, optical systems with CCD camera and simple PTV (Particle Tracking Velocimetry) algorithm. The advantage of this assay and experiment is to measure the velocity of a single bacterium and to quantify the degree of chemotaxis by statistically analyzing the velocity at the same time. Specifically, we measured and analyzed the motility of Escherichia coli strain RP437 in response to various concentration gradients of L-aspartate statistically and quantitatively by using this microfluidic assay. We obtained the probability density of the velocity while RP437 cells are swimming and tumbling in the presence of the linear concentration gradient of L-aspartate, and quantified the degree of chemotaxis by analyzing the probability density.

Transcriptomic Approach for Understanding the Adaptation of Salmonella enterica to Contaminated Produce

  • Park, Sojung;Nam, Eun woo;Kim, Yeeun;Lee, Seohyeon;Kim, Seul I;Yoon, Hyunjin
    • Journal of Microbiology and Biotechnology
    • /
    • 제30권11호
    • /
    • pp.1729-1738
    • /
    • 2020
  • Salmonellosis is a form of gastroenteritis caused by Salmonella infection. The main transmission route of salmonellosis has been identified as poorly cooked meat and poultry products contaminated with Salmonella. However, in recent years, the number of outbreaks attributed to contaminated raw produce has increased dramatically. To understand how Salmonella adapts to produce, transcriptomic analysis was conducted on Salmonella enterica serovar Virchow exposed to fresh-cut radish greens. Considering the different Salmonella lifestyles in contact with fresh produce, such as motile and sessile lifestyles, total RNA was extracted from planktonic and epiphytic cells separately. Transcriptomic analysis of S. Virchow cells revealed different transcription profiles between lifestyles. During bacterial adaptation to fresh-cut radish greens, planktonic cells were likely to shift toward anaerobic metabolism, exploiting nitrate as an electron acceptor of anaerobic respiration, and utilizing cobalamin as a cofactor for coupled metabolic pathways. Meanwhile, Salmonella cells adhering to plant surfaces showed coordinated upregulation in genes associated with translation and ribosomal biogenesis, indicating dramatic cellular reprogramming in response to environmental changes. In accordance with the extensive translational response, epiphytic cells showed an increase in the transcription of genes that are important for bacterial motility, nucleotide transporter/metabolism, cell envelope biogenesis, and defense mechanisms. Intriguingly, Salmonella pathogenicity island (SPI)-1 and SPI-2 displayed up- and downregulation, respectively, regardless of lifestyles in contact with the radish greens, suggesting altered Salmonella virulence during adaptation to plant environments. This study provides molecular insights into Salmonella adaptation to plants as an alternative environmental reservoir.

Ginsenoside Rg3 reduces the adhesion, invasion, and intracellular survival of Salmonella enterica serovar Typhimurium

  • Mechesso, Abraham F.;Quah, Yixian;Park, Seung-Chun
    • Journal of Ginseng Research
    • /
    • 제45권1호
    • /
    • pp.75-85
    • /
    • 2021
  • Background: Invasive infections due to foodborne pathogens, including Salmonella enterica serovar Typhimurium, are prevalent and life-threatening. This study aimed to evaluate the effects of ginsenoside Rg3 (Rg3) on the adhesion, invasion, and intracellular survival of S. Typhimurium. Methods: The impacts of Rg3 on bacterial growth and host cell viability were determined using the time kill and the 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide assays, respectively. Gentamicin assay and confocal microscopic examination were undertaken to determine the effects of Rg3 on the adhesive and invasive abilities of S. Typhimurium to Caco-2 and RAW 264.7 cells. Quantitative reverse transcription polymerase chain reaction was performed to assess the expression of genes correlated with the adhesion, invasion, and virulence of S. Typhimurium. Results: Subinhibitory concentrations of Rg3 significantly reduced (p < 0.05) the adhesion, invasion, and intracellular survival of S. Typhimurium. Rg3 considerably reduced (p < 0.05) the bacterial motility as well as the release of nitrite from infected macrophages in a concentration-dependent manner. The expression of genes related to the adhesion, invasion, quorum sensing, and virulence of S. Typhimurium including cheY, hilA, OmpD, PrgK, rsgE, SdiA, and SipB was significantly reduced after Rg3 treatment. Besides, the compound downregulated rac-1 and Cdc-42 that are essential for actin remodeling and membrane ruffling, thereby facilitating Salmonella entry into host cells. This report is the first to describe the effects of Rg3 on "trigger" entry mechanism and intracellular survival S. Typhimurium. Conclusion: Rg3 could be considered as a supplement agent to prevent S. Typhimurium infection.

가상경계법을 적용한 2차원 미생물 이동에 관한 수치연구 (NUMERICAL SIMULATION OF TWO-DIMENSIONAL MICROORGANISM LOCOMOTION USING THE IMMERSED BOUNDARY METHOD)

  • 란지트;서용권;강상모
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2009년 추계학술대회논문집
    • /
    • pp.164-169
    • /
    • 2009
  • Study on swimming of microorganisms like, sperm motility, cilia beating, bacterial flagellar propulsion has found immense significance in the field of biological fluiddynamics. Because of the complexity involved, it is challenging for the researchers to model such problems. Immersed boundary method has proved its efficacy in the field of biological fluiddynamics, The present work aims at performing a numerical study on the microorganism locomotion using the immersed boundary method proposed by Peskin[1]. A two-dimensional model of the microorganism is modeled as thin elastic filament described as a sine wave. The neutrally buoyant organism undergoing deformations is immersed in a viscous and incompressible fluid. The fluid quantities are described using Eulerian coordinates and the immersed body is represented by Lagrangian coordinates. The Eulerian and Lagrangian variables are connected by the Dirac delta function. The Navier-Stokes equations governing the fluid flow are solved using the fractional step method on a staggered Cartesian grid system. The developed numerical code in FORTRAN will be validated by comparing the numerical results with the available results.

  • PDF

Evaluation of Ciclopirox as a Virulence-modifying Agent Against Multidrug Resistant Pseudomonas aeruginosa Clinical Isolates from Egypt

  • Zakaria, Azza S.;Edward, Eva A.;Mohamed, Nelly M.
    • 한국미생물·생명공학회지
    • /
    • 제47권4호
    • /
    • pp.651-661
    • /
    • 2019
  • Targeting the pathogen viability using drugs is associated with development of drug resistance due to selective pressure. Hence, there is an increased interest in developing agents that target bacterial virulence. In this study, the inhibitory effect of ciclopirox, an antifungal agent with iron chelation potential, on the microbial virulence factors was evaluated in 26 clinical MDR Pseudomonas aeruginosa isolates collected from Alexandria Main University Hospital, a tertiary hospital in Egypt. Treatment with 9 ㎍/ml ciclopirox inhibited the hemolytic activity in 70% isolates, reduced pyocyanin production, decreased protease secretion in 46% isolates, lowered twitching and swarming motility, and decreased biofilm formation by 1.5- to 4.5-fold. The quantitative real-time PCR analysis revealed that treatment with ciclopirox downregulated the expression levels of alkaline protease (aprA) and pyocyanin (phzA1). Ciclopirox is used to treat hematological malignancies and the systemic administration of ciclopirox is reported to have adequate oral absorption with a satisfactory drug safety profile. It is important to calculate the appropriate clinical dose and therapeutic index to reposition ciclopirox from a topical antifungal agent to a promising virulence-modifying agent agent against P. aeruginosa, a problematic Gram-negative pathogen.