• Title/Summary/Keyword: Bacterial 16S rRNA sequencing

Search Result 230, Processing Time 0.027 seconds

Metagenomic Approach to Identifying Foodborne Pathogens on Chinese Cabbage

  • Kim, Daeho;Hong, Sanghyun;Kim, You-Tae;Ryu, Sangryeol;Kim, Hyeun Bum;Lee, Ju-Hoon
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.2
    • /
    • pp.227-235
    • /
    • 2018
  • Foodborne illness represents a major threat to public health and is frequently attributed to pathogenic microorganisms on fresh produce. Recurrent outbreaks often come from vegetables that are grown close to or within the ground. Therefore, the first step to understanding the public health risk of microorganisms on fresh vegetables is to identify and describe microbial communities. We investigated the phyllospheres on Chinese cabbage (Brassica rapa subsp. pekinensis, N = 54). 16S rRNA gene amplicon sequencing targeting the V5-V6 region of 16S rRNA genes was conducted by employing the Illumina MiSeq system. Sequence quality was assessed, and phylogenetic assessments were performed using the RDP classifier implemented in QIIME with a bootstrap cutoff of 80%. Principal coordinate analysis was performed using a weighted Fast UniFrac matrix. The average number of sequence reads generated per sample was 34,584. At the phylum level, bacterial communities were composed primarily of Proteobacteria and Bacteroidetes. The most abundant genera on Chinese cabbages were Chryseobacterium, Aurantimonadaceae_g, Sphingomonas, and Pseudomonas. Diverse potential pathogens, such as Pantoea, Erwinia, Klebsiella, Yersinia, Bacillus, Staphylococcus, Salmonella, and Clostridium were also detected from the samples. Although further epidemiological studies will be required to determine whether the detected potential pathogens are associated with foodborne illness, our results imply that a metagenomic approach can be used to detect pathogenic bacteria on fresh vegetables.

Molecular Identification and Technological Properties of Acetic Acid Bacteria Isolated from Malatya Apricot and Home-Made Fruit Vinegars

  • Buyukduman, Eda;Kirtil, Hatice Ebrar;Metin, Banu
    • Microbiology and Biotechnology Letters
    • /
    • v.50 no.1
    • /
    • pp.81-88
    • /
    • 2022
  • Acetic acid bacteria (AAB) are versatile organisms involved in the production of variety of fermented foods, such as vinegar and kombucha, and products of biotechnological relevance, such as bacterial cellulose. In the present study, Malatya apricot, a variety with protected designation of origin (PDO), and vinegar samples produced using various fruits were used to isolate AAB. The 19 AAB isolates obtained were typed using (GTG)5 fingerprinting, and the ones selected were identified by sequencing either 16S rDNA alone or in combination with 16S-23S rRNA internal transcribed spacer region or ligA gene. While all apricot isolates (n = 10) were Gluconobacter cerinus, vinegar isolates (n = 9) were composed of Komagataeibacter saccharivorans, Acetobacter syzygii, and possible two new species of AAB, Komagataeibacter sp., and Gluconobacter sp. (GTG)5 fingerprinting showed the presence of several genotypes of G. cerinus in the apricot samples. Screening for some technologically relevant properties, including thermotolerance, ethanol tolerance, and cellulose production capability, showed that all Komagataeibacter and some Gluconobacter isolates could tolerate the temperature of 35℃, and that vinegar isolates could tolerate up to 8% ethanol. One isolate, Komagataeibacter sp. GUS3 produced bacterial cellulose (1 g/l) and has the potential to be used for cellulose production.

Fibrinolytic Activity and Characterization of Bacillus licheniformis HK-12 Isolated from Chungkook-Jang (청국장에서 분리한 세균인 Bacillus licheniformis HK-12의 혈전용해활성 및 특징)

  • Sohn, Byung-Hee;Song, Yu-Jin;Oh, Kye-Heon
    • KSBB Journal
    • /
    • v.23 no.3
    • /
    • pp.251-256
    • /
    • 2008
  • The aim of this work was to investigate the fibrinolytic activity and characterization of Bacillus licheniformis HK-12, which produces the fibrinolytic enzyme excreted from naturally fermented Chungkook-Jang. Initially, the physiological and biochemical characteristics of strain HK-12 was examined. Both physiological analysis using BIOLOG system and phylogenetic analysis using 16S rRNA sequencing were performed to identify the strain, and the strain could be assigned to Bacillus licheniformis, designated as B. lichenformis HK-12, and registered in GenBank as [EU288193]. Phylogenetic analysis of B. licheniformis HK-12 was plotted based on 16S rRNA sequence comparisons. During the incubation period of B. licheniformis HK-12, the changes of bacterial growth, fibrinolytic activity, and pH were monitored. As the results, after 36 hours of incubation, the maximum fibinolytic activity was about 2.25 times than that of plasmin used as standard. Optimal conditions on the growth of B. licheniformis HK-12 associated with the fibrinolytic activity was initial pH 7.0 and 40$^{\circ}C$, respectively.

Evaluation of an Appropriate Replacement Cycle for Copper Antibacterial Film to Prevent Secondary Infection

  • Je, Min-A;Park, Heechul;Kim, Junseong;Lee, Eun Ju;Jung, Minju;Kim, Minji;Jeong, Mingyoung;Yun, Jiyun;Sin, Hayeon;Jin, Hyunwoo;Lee, Kyung Eun;Kim, Jungho
    • Biomedical Science Letters
    • /
    • v.28 no.3
    • /
    • pp.195-199
    • /
    • 2022
  • The use of copper antibacterial films as an effective infection prevention method is increasing owing to its ability to reduce the risk of pathogen transmission. In this study, we evaluated the bacterial contamination of the antibacterial copper membrane attached to a door handle at a university over time. Six mounting locations with high floating population were selected. In three sites, the door handles with the antibacterial film were exposed, while the remaining three were not attached with the antibacterial films. On days 7 and 14, isolated bacterial strains were inoculated in BHI broth and agar, respectively. Colony-forming units (CFU) were determined after incubation. Strain identification was performed using bacterial 16s rRNA PCR and sequencing. Results showed that the bacterial population on day 14 significantly increased from 6 × 109 CFU/mL (day 7) to 2 × 1010 CFU/mL. Furthermore, strain distribution was not different between the on and off the copper antibacterial film groups. In conclusion, although copper has an antibacterial activity, microbial contamination may occur with prolonged use.

Seasonal Changes in the Microbial Communities on Lettuce (Lactuca sativa L.) in Chungcheong-do, South Korea

  • Woojung Lee;Min-Hee Kim;Juyeon Park;You Jin Kim;Eiseul Kim;Eun Jeong Heo;Seung Hwan Kim;Gyungcheon Kim;Hakdong Shin;Soon Han Kim;Hae-Yeong Kim
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.2
    • /
    • pp.219-227
    • /
    • 2023
  • Lettuce is one of the most consumed vegetables worldwide. However, it has potential risks associated with pathogenic bacterial contamination because it is usually consumed raw. In this study, we investigated the changes in the bacterial community on lettuce (Lactuca sativa L.) in Chungcheong-do, South Korea, and the prevalence of foodborne pathogens on lettuce in different seasons using 16S rRNA gene-based sequencing. Our data revealed that the Shannon diversity index showed the same tendency in term of the number of OTUs, with the index being greatest for summer samples in comparison to other seasons. Moreover, the microbial communities were significantly different between the four seasons. The relative abundance of Actinobacteriota varied according to the season. Family Micrococcaceae was most dominant in all samples except summer, and Rhizobiaceae was predominant in the microbiome of the summer sample. At the genus level, the relative abundance of Bacillus was greatest in spring samples, whereas Pseudomonas was greatest in winter samples. Potential pathogens, such as Staphylococcus and Clostridium, were detected with low relative abundance in all lettuce samples. We also performed metagenome shotgun sequencing analysis on the selected summer and winter samples, which were expected to be contaminated with foodborne pathogens, to support 16S rRNA gene-based sequencing dataset. Moreover, we could detect seasonal biomarkers and microbial association networks of microbiota on lettuce samples. Our results suggest that seasonal characteristics of lettuce microbial communities, which include diverse potential pathogens, can be used as basic data for food safety management to predict and prevent future outbreaks.

Dietary turmeric (Curcuma longa L.) supplementation improves growth performance, short-chain fatty acid production, and modulates bacterial composition of weaned piglets

  • Recharla, Neeraja;Balasubramanian, Balamuralikrishnan;Song, Minho;Puligundla, Pradeep;Kim, Soo-ki;Jeong, Jin Young;Park, Sungkwon
    • Journal of Animal Science and Technology
    • /
    • v.63 no.3
    • /
    • pp.575-592
    • /
    • 2021
  • In livestock nutrition, natural feed additives are gaining increased attention as alternatives to antibiotic growth promoters to improve animal performance. This study investigated the effects of dietary turmeric supplementation on the growth performance and gut health of weaned piglets. A total of 48 weaned piglets (Duroc × [Landrace × Yorkshire]) were used in a 6-week feeding trial. All piglets were allotted to two dietary treatments: corn-soybean meal basal diet without turmeric (control) and with 1% weight per weight (w/w) turmeric powder (turmeric). The results showed that dietary inclusion of turmeric with the basal diet improved final body weight and total average daily gain (p < 0.05). The concentrations of short-chain fatty acids in the fecal samples, including acetic, butyric, and propionic acids, were higher in the turmeric group (p < 0.05). The villus height-to-crypt depth ratio was higher in the ileum of turmeric-fed piglets (p = 0.04). The 16S rRNA gene sequencing of fecal microbiota indicated that, at the phylum level, Firmicutes and Bacteroidetes were the most predominant taxa in all fecal samples. Bacteroidetes were significantly decreased in the turmeric group compared to the control group (p = 0.021). At the genus level, turmeric showed a decreased abundance of Prevotella (p = 0.021) and an increasing trend of Lactobacillus (p = 0.083). Among the total detected species, nine bacterial species showed significant differences between the two groups. The results of this study indicated that turmeric altered the gut microbiota and shortchain fatty acid production. This suggests that turmeric could be used as a potential alternative growth promoter for piglets.

Diversity of Culturable Bacteria Associated with Hard Coral from the Antarctic Ross Sea

  • Kim, Min Ju;Park, Ha Ju;Youn, Ui Joung;Yim, Joung Han;Han, Se Jong
    • Journal of Marine Life Science
    • /
    • v.4 no.1
    • /
    • pp.22-28
    • /
    • 2019
  • The bacterial diversity of an Antarctic hard coral, Errina fissurata, was examined by isolating bacterial colonies from crushed coral tissue and by sequencing their 16S rRNA gene. From the analyzed results, the bacteria were classified as Actinobacteria (56%), Firmicutes (35%) and Proteobacteria (9%). The thirty-four isolates were cultured in liquid media at different temperatures and their growth was assessed over time. The majority of the isolates displayed their highest growth rate at 25℃ during the first three days of cultivation, even though the coral was from a cold environment. Nevertheless, strains showing their highest growth rate at low temperatures (15℃ and 4℃) were also found. This study reports the composition of an Antarctic hard coral-associated culturable bacterial community and their growth behavior at different temperatures.

Comparison of the oral microbial composition between healthy individuals and periodontitis patients in different oral sampling sites using 16S metagenome profiling

  • Kim, Yeon-Tae;Jeong, Jinuk;Mun, Seyoung;Yun, Kyeongeui;Han, Kyudong;Jeong, Seong-Nyum
    • Journal of Periodontal and Implant Science
    • /
    • v.52 no.5
    • /
    • pp.394-410
    • /
    • 2022
  • Purpose: The purpose of this study was to compare the microbial composition of 3 types of oral samples through 16S metagenomic sequencing to determine how to resolve some sampling issues that occur during the collection of sub-gingival plaque samples. Methods: In total, 20 subjects were recruited. In both the healthy and periodontitis groups, samples of saliva and supra-gingival plaque were collected. Additionally, in the periodontitis group, sub-gingival plaque samples were collected from the deepest periodontal pocket. After DNA extraction from each sample, polymerase chain reaction amplification was performed on the V3-V4 hypervariable region on the 16S rRNA gene, followed by metagenomic sequencing and a bioinformatics analysis. Results: When comparing the healthy and periodontitis groups in terms of alpha-diversity, the saliva samples demonstrated much more substantial differences in bacterial diversity than the supra-gingival plaque samples. Moreover, in a comparison between the samples in the case group, the diversity score of the saliva samples was higher than that of the supra-gingival plaque samples, and it was similar to that of the sub-gingival plaque samples. In the beta-diversity analysis, the sub-gingival plaque samples exhibited a clustering pattern similar to that of the periodontitis group. Bacterial relative abundance analysis at the species level indicated lower relative frequencies of bacteria in the healthy group than in the periodontitis group. A statistically significant difference in frequency was observed in the saliva samples for specific pathogenic species (Porphyromonas gingivalis, Treponema denticola, and Prevotella intermedia). The saliva samples exhibited a similar relative richness of bacterial communities to that of sub-gingival plaque samples. Conclusions: In this 16S oral microbiome study, we confirmed that saliva samples had a microbial composition that was more similar to that of sub-gingival plaque samples than to that of supra-gingival plaque samples within the periodontitis group.

A Fosmid Cloning Strategy for Detecting the Widest Possible Spectrum of Microbes from the International Space Station Drinking Water System

  • Choi, Sangdun;Chang, Mi Sook;Stuecker, Tara;Chung, Christine;Newcombe, David A.;Venkateswaran, Kasthuri
    • Genomics & Informatics
    • /
    • v.10 no.4
    • /
    • pp.249-255
    • /
    • 2012
  • In this study, fosmid cloning strategies were used to assess the microbial populations in water from the International Space Station (ISS) drinking water system (henceforth referred to as Prebiocide and Tank A water samples). The goals of this study were: to compare the sensitivity of the fosmid cloning strategy with that of traditional culture-based and 16S rRNA-based approaches and to detect the widest possible spectrum of microbial populations during the water purification process. Initially, microbes could not be cultivated, and conventional PCR failed to amplify 16S rDNA fragments from these low biomass samples. Therefore, randomly primed rolling-circle amplification was used to amplify any DNA that might be present in the samples, followed by size selection by using pulsed-field gel electrophoresis. The amplified high-molecular- weight DNA from both samples was cloned into fosmid vectors. Several hundred clones were randomly selected for sequencing, followed by Blastn/Blastx searches. Sequences encoding specific genes from Burkholderia, a species abundant in the soil and groundwater, were found in both samples. Bradyrhizobium and Mesorhizobium, which belong to rhizobia, a large community of nitrogen fixers often found in association with plant roots, were present in the Prebiocide samples. Ralstonia, which is prevalent in soils with a high heavy metal content, was detected in the Tank A samples. The detection of many unidentified sequences suggests the presence of potentially novel microbial fingerprints. The bacterial diversity detected in this pilot study using a fosmid vector approach was higher than that detected by conventional 16S rRNA gene sequencing.

Polyphasic Analysis of the Bacterial Community in the Rhizosphere and Roots of Cyperus rotundus L. Grown in a Petroleum-Contaminated Soil

  • Jurelevicius, Diogo;Korenblum, Elisa;Casella, Renata;Vital, Ronalt Leite;Seldin, Lucy
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.5
    • /
    • pp.862-870
    • /
    • 2010
  • Cyperus rotundus L. is a perennial herb that was found to be dominating an area in northeast Brazil previously contaminated with petroleum. In order to increase our knowledge of microorganism-plant interactions in phytoremediation, the bacterial community present in the rhizosphere and roots of C. rotundus was evaluated by culture-dependent and molecular approaches. PCR-DGGE analysis based on the 16S rRNA gene showed that the bacterial community in bulk soil, rhizosphere, and root samples had a high degree of similarity. A complex population of alkane-utilizing bacteria and a variable nitrogen-fixing population were observed via PCR-DGGE analysis of alkB and nifH genes, respectively. In addition, two clone libraries were generated from alkB fragments obtained by PCR of bulk and rhizosphere soil DNA samples. Statistical analyses of these libraries showed that the compositions of their respective populations were different in terms of alkB gene sequences. Using culturedependent techniques, 209 bacterial strains were isolated from the rhizosphere and rhizoplane/roots of C. rotundus. Dot-blot analysis showed that 17 strains contained both alkB and nifH gene sequences. Partial 16S rRNA gene sequencing revealed that these strains are affiliated with the genera Bosea, Cupriavidus, Enterobacter, Gordonia, Mycoplana, Pandoraea, Pseudomonas, Rhizobium, and Rhodococcus. These isolates can be considered to have great potential for the phytoremediation of soil with C. rotundus in this tropical soil area.