• Title/Summary/Keyword: Bacteria chemotaxis

Search Result 19, Processing Time 0.026 seconds

A Novel Optimization Algorithm Inspired by Bacteria Behavior Patterns

  • Jung, Sung-Hoon;Kim, Tae-Geon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.3
    • /
    • pp.392-400
    • /
    • 2008
  • This paper proposes a novel optimization algorithm inspired by bacteria behavior patterns for foraging. Most bacteria can trace attractant chemical molecules for foraging. This tracing capability of bacteria called chemotaxis might be optimized for foraging because it has been evolved for few millenniums. From this observation, we developed a new optimization algorithm based on the chemotaxis of bacteria in this paper. We first define behavior and decision rules based on the behavior patterns of bacteria and then devise an optimization algorithm with these behavior and decision rules. Generally bacteria have a quorum sensing mechanism that makes it possible to effectively forage, but we leave its implementation as a further work for simplicity. Thereby, we call our algorithm a simple bacteria cooperative optimization (BCO) algorithm. Our simple BCO is tested with four function optimization problems on various' parameters of the algorithm. It was found from experiments that the simple BCO can be a good framework for optimization.

Quantitative Analysis of Single Bacterial Chemotaxis Using a Hydrodynamic Focusing Channel (유체역학적 집속 효과를 이용한 단일 박테리아 주화성의 정량적 분석)

  • Jeon, Ho-Jeong;Lee, Yong-Ku;Jin, Song-Wan;Koo, Sang-Mo;Lee, Chang-Soo;Yoo, Jung-Yul
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.3 s.258
    • /
    • pp.209-216
    • /
    • 2007
  • Bacterial chemotaxis is essential to the study of structure and function of bacteria. Although many studies have accumulated the knowledge about chemotaxis in the past, the motion of a single bacterium has not been studied much yet. In this study, we have developed a device microfabricated by soft lithography and consisting of microfluidic channels. The microfluidic assay generates a concentration gradient of chemoattractant linearly in the main channel by only diffusion of the chemicals. Bacteria are injected into the main channel in a single row by hydrodynamic focusing technique. We measured the velocity of bacteria in response to a given concentration gradient of chemoattractant using the microfludic assay, optical systems with CCD camera and simple PTV (Particle Tracking Velocimetry) algorithm. The advantage of this assay and experiment is to measure the velocity of a single bacterium and to quantify the degree of chemotaxis by statistically analyzing the velocity at the same time. Specifically, we measured and analyzed the motility of Escherichia coli strain RP437 in response to various concentration gradients of L-aspartate statistically and quantitatively by using this microfluidic assay. We obtained the probability density of the velocity while RP437 cells are swimming and tumbling in the presence of the linear concentration gradient of L-aspartate, and quantified the degree of chemotaxis by analyzing the probability density.

Comparison of the Chemotaxis Potential of Bacteria Isolated from Spinach Roots and Nonrhizosphere Soil

  • Kim, Jong-Shik;Sakai Masao;Lee, Si-Kyung;Yahng, Chahng-Sook;Matsuguchi Tatsuhiko
    • Journal of Microbiology and Biotechnology
    • /
    • v.11 no.1
    • /
    • pp.160-163
    • /
    • 2001
  • In order to investigate the role of bacterial chemotaxis in root colonization, the chemotaxis potential of bacteria isolated from spinach roots was compared with that of bacteria from nonhizosphere soil, with reference to the plant age (1,000 isolates), soil moisture conditons (1,400 isolates), and part of the root (200 isolates). The % CT (% occurrence of chemotaxis (+) isolates among total bacterial isoltes) of the root isolates significantlyfluctuated during the plant growth period, reaching a maximum after 10-15 days of growth. At this time period, the maximum % CT for the root isolates was around 70-80% CT under a soil moisture 50% WFP (% volume of water-filled pores in total soil pores), and then gradually reduced with an increasing % WFP. The results of the chemotaxis potential of each of the 100 islates from the spinach roots and nonrhizosphere soil under various % WFP demonstrated that the % CT of the root isolates were significantly higher than those of solates from the nonrhizosphere soil under a wide range of soil moisture content (35-80% WFP). Furthermore, the % CT value (80%) from the upper root was significantly higher than tht (55%) from the lower root. Compared with the % CT values of the roots, the values from the nonrhizosphere soil did not significantly vary relative to the plant age of % WFP. These results indicate that chemotaxis would appear to be a major factor in bacterial root colonization.

  • PDF

Bacteria Cooperative Optimization Based on E. Coli Chemotaxis (대장균의 주화성에 근거한 박테리아 협동 최적화)

  • Jeong, Hui-Jeong;Jeong, Seong-Hun
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2007.04a
    • /
    • pp.241-244
    • /
    • 2007
  • 본 논문에서는 박테리아의 주화성에 기초한 Bacteria Cooperative Optimization(BCO) 알고리즘을 소개한다. BCO는 Ant Colony Optimization (ACO)처럼 자연계에 존재하는 생명체의 행동양식을 모방하여 만든 최적화 알고리즘으로 크게 초기화, 측정, 행동결정, 이동으로 구성된다. 우리는 먼저 BCO 알고리즘을 설명하고 2차원 함수 최적화 문제를 이용하여 BCO알고리즘과 Genetic Algorithm(GA) 그리고 Bacterial Foraging for Distributed Optimization(BFO)의 성능 측정 결과를 기술한다. 실험 결과 BCO의 성능이 GA나 BFO보다 우수함을 보였다.

  • PDF

Motility and Chemotaxis in the Lyme Spirochete Borrelia burgdorferi: Role in Pathogenesis (라임병 원인 스피로헤타 Borrelia burgdorferi의 운동성과 주화성: 발병기전에서의 역할)

  • Yoo, Ah Young;Kang, Ho Young;Moon, Ki Hwan
    • Journal of Life Science
    • /
    • v.28 no.5
    • /
    • pp.627-637
    • /
    • 2018
  • Motility and chemotaxis are crucial for disease development in many motile pathogens, including spirochetes. In many bacteria, motility is provided by flagella rotation, which is controlled by a chemotaxis-signal-transduction system. Thus, motility and chemotaxis are inextricably linked. Spirochetes are a unique group of bacteria with distinctive flat-wave morphology and corkscrew-like locomotion. This unusual motility pattern is believed to be important for efficient motility within the dense tissues through which these spirochetes preferentially disseminate in a host. Unlike other externally flagellated bacteria-where flagella are in the ambient environment-the flagella of spirochetes are enclosed by the outer membrane and thus are called periplasmic flagella or endoflagella. Although motilityand chemotaxis-associated genes are well studied in some bacteria, the knowledge of how the spirochete achieves complex swimming and the roles of most of the putative spirochetal chemotaxis proteins are still elusive. Recently, cutting-edge imaging methods and unique genetic manipulations in spirochetes have helped to unravel the mystery of motility and chemotaxis in spirochetes. These contemporary advances in understanding the motility and chemotaxis of spirochetes in a host's persistence and disease process are highlighted in this review.

Global Search Strategy using Enhanced Bacteria Chemotaxis algorithm (개선된 Bacteria Chemotaxis 알고리즘을 이용한 전역적 탐색 기법)

  • Park Jong Won;Park J.E.;Oh K.W.
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2005.11b
    • /
    • pp.790-792
    • /
    • 2005
  • 함수 최적화는 주어진 자원의 한도 내에서 최대의 이익 흑은 최소의 손실을 내는 최선의 결정을 내리는 것을목표로 한다. 본 논문은 $M{\ddot{u}}ller$의 연구를 바탕으로 박테리아의 주화성을 형상화한 'Chemical Sensing Bacteria Chemotaxis'라는 알고리즘을 제안한다. 이 알고리즘은 multimodal 환경에서의 전역 탐색을 목표로 한다. 또한 실험을 통해, 제안 알고리즘의 타당성을 분석하고, 결과적으로 제안 알고리즘이 기존의 자연계 기반의 알고리즘에 비해 경쟁력이 있음을 입증하였다.

  • PDF

Motion of Microbeads Propelled by Bacterial Chemotaxis (박테리아의 주화성에 의한 미세입자의 운동)

  • Kim, Dong-Wook;Kim, Young-Won;Yoo, Jung-Yul
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.5
    • /
    • pp.523-529
    • /
    • 2010
  • Recently, several research groups have been investigating the motion of flagellated bacteria, with the aim of examining the feasibility of using bacterial chemotaxis as an efficient power source for microactuators. In this study, microparticle-tracking velocimetry ($\mu$-PTV) is used for investigating the motion of fluorescent microbeads propelled by bacterial chemotaxis. Flagellated bacteria, Serratia marcescens, are spontaneously attached to the surface of the fluorescent polystyrene (PS) microbeads in an aqueous culture. The microbeads thus treated are injected into the test medium, which contains the solidified chemoattractant L-aspartate. With time, the particles slowly move toward the zone in which the L-aspartate concentration is high. This study shows that chemotaxis of flagellated bacteria can be applied as an efficient power source for microactuators.

Effect of Different Abiotic Factors on Chemotaxis of Bacteria Towards Fungal Propagules (종류가 다른 무생물적 요인이 진균류에 미치는 세균의 주화성)

  • Gupta, Sushma;Arora, Dilip K.;Pandey, Arun K.;Lee, Min-Woong
    • The Korean Journal of Mycology
    • /
    • v.20 no.2
    • /
    • pp.109-117
    • /
    • 1992
  • Chemotactic responses of five motile saprophytic and one phytopathogenic bacteria e.g. Agrobacterium radiobacter, Bacillus subtilis, B. polymyxa, Pseudomonas aeruginosa, P. fluorescens and Xanthomonas malvacearum towards exudate of Cochliobolus sativus conidia, Fusarium of oxysporum f. sp. ciceri chlamydospores, Macrophomina phaseolina sclerotia and Phytophthora drechsleri f. sp. cajani oospores were determined in vitro at different abiotic conditions. In general, a positive correlation (r=0.76 to 0.89; P=0.05) was observed between concentration of fungal exudates and attraction of bacterial cells. Similarly, a significant (P=0.05; r=+0.82 to 0.95) positive correlation was noticed between chemotactic response and incubation period. The chemotactic response of bacteria was greatly influenced by temperature and pH of the test fungal exudate. The optimum temperature for maximum chemotaxis was $25^{\circ}C$ for A. radiobacter, $30^{\circ}C$ for B. polymyxa, P. aerugionosa, P. fluorescens and X. malvacearum and $35^{\circ}C$ for B. subtilis. Fungal exudates maintained at pH 7 attracted maximum number of bacteria. The response of bacterial cells to exudates at pH 3 and 11 was not significantly (P=0.05) different than that to the buffer (control). Chemotaxis of bacteria was observed towards attractants (fungal propagules and their exudates) when they were kept apart and bridged with the capillaries filled with non-attractant (buffer) or attractant (exudate).

  • PDF

Independent regulation of antigen processing and presentation on induction of antibody responses to various bacterial antigens in C3H/He mice

  • Kim, Hyung-Su;Jeong, Gajin
    • Journal of Microbiology
    • /
    • v.33 no.4
    • /
    • pp.355-362
    • /
    • 1995
  • Induction of antibody production in C3H/He mice by bacterial infection is regulated through the processing exerted by antigen presenting cells. From the studies with Psudomonas aeruginosa, Salmonella typhimurium, and Micrococcus luteu, lipopolysaccharides (LPS) in Gram negative bacteria, which are known to be T-cell independent B cell mitogen, seem to be the major factor stimulating immune responses via activation of macrophages. Activation of macrophage, however, does not seem to correlate with antibody production. M. luteus was easily eliminatd by activated macrophages, while the processed antigens were immediately releasedd into culture medium before presentation. Nevertheless, antigens from Gram positive bacteria, Staphylococcus aureus and Bacillus subtilis, were very very active in chemotaxis and activation of periotoneal macrophages as well as in antien presnetation, while the very nature of the antigens is not yet clearly understood.

  • PDF