Browse > Article
http://dx.doi.org/10.5352/JLS.2018.28.5.627

Motility and Chemotaxis in the Lyme Spirochete Borrelia burgdorferi: Role in Pathogenesis  

Yoo, Ah Young (Department of Microbiology, College of Natural Sciences, Pusan National University)
Kang, Ho Young (Department of Microbiology, College of Natural Sciences, Pusan National University)
Moon, Ki Hwan (Division of Marine Bioscience, College of Ocean Science and Technology, Korea Maritime and Ocean University)
Publication Information
Journal of Life Science / v.28, no.5, 2018 , pp. 627-637 More about this Journal
Abstract
Motility and chemotaxis are crucial for disease development in many motile pathogens, including spirochetes. In many bacteria, motility is provided by flagella rotation, which is controlled by a chemotaxis-signal-transduction system. Thus, motility and chemotaxis are inextricably linked. Spirochetes are a unique group of bacteria with distinctive flat-wave morphology and corkscrew-like locomotion. This unusual motility pattern is believed to be important for efficient motility within the dense tissues through which these spirochetes preferentially disseminate in a host. Unlike other externally flagellated bacteria-where flagella are in the ambient environment-the flagella of spirochetes are enclosed by the outer membrane and thus are called periplasmic flagella or endoflagella. Although motilityand chemotaxis-associated genes are well studied in some bacteria, the knowledge of how the spirochete achieves complex swimming and the roles of most of the putative spirochetal chemotaxis proteins are still elusive. Recently, cutting-edge imaging methods and unique genetic manipulations in spirochetes have helped to unravel the mystery of motility and chemotaxis in spirochetes. These contemporary advances in understanding the motility and chemotaxis of spirochetes in a host's persistence and disease process are highlighted in this review.
Keywords
Borrelia burgdorferi; chemotaxis; lyme disease; motility; spirochete;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Liao, S., Sun, A., Ojcius, D. M., Wu, S., Zhao, J. and Yan, J. 2009. Inactivation of the fliY gene encoding a flagellar motor switch protein attenuates mobility and virulence of Leptospira interrogans strain Lai. BMC. Microbiol. 9, 253.   DOI
2 Ge, Y. and Charon, N. W. 1997. FlaA, a putative flagellar outer sheath protein, is not an immunodominant antigen associated with Lyme disease. Infect. Immun. 65, 2992-2995.
3 Giacani, L. and Lukehart, S. A. 2014. The endemic treponematoses. Clin. Microbiol. Rev. 27, 89-115.   DOI
4 Glekas, G. D., Plutz, M. J., Walukiewicz, H. E., Allen, G. M., Rao, C. V. and Ordal, G. W. 2012. Elucidation of the multiple roles of CheD in Bacillus subtilis chemotaxis. Mol. Microbiol. 86, 743-756.   DOI
5 Goldstein, S. F., Buttle, K. F. and Charon, N. W. 1996. Structural analysis of the Leptospiraceae and Borrelia burgdorferi by high-voltage electron microscopy. J. Bacteriol. 178, 6539-6545.   DOI
6 Goldstein, S. F., Charon, N. W. and Kreiling, J. A. 1994. Borrelia burgdorferi swims with a planar waveform similar to that of eukaryotic flagella. Proc. Natl. Acad. Sci. USA. 91, 3433-3437.   DOI
7 Guerau-de-Arellano, M. and Huber, B. T. 2002. Development of autoimmunity in Lyme arthritis. Curr. Opin. Rheumatol. 14, 388-393.   DOI
8 Guyard, C., Raffel, S. J., Schrumpf, M. E., Dahlstrom, E., Sturdevant, D., Ricklefs, S. M., Martens, C., Hayes, S. F., Fischer, E. R., Hansen, B. T., Porcella, S. F. and Schwan, T. G. 2013. Periplasmic flagellar export apparatus protein, FliH, is involved in post-transcriptional regulation of FlaB, motility and virulence of the relapsing fever spirochete Borrelia hermsii. PLoS One 8, e72550.   DOI
9 Haake, D. A. and Levett, P. N. 2015. Leptospirosis in humans. Curr. Top. Microbiol. Immunol. 387, 65-97.
10 Motaleb, M. A., Sal, M. S. and Charon, N. W. 2004. The decrease in FlaA observed in a flaB mutant of Borrelia burgdorferi occurs posttranscriptionally. J. Bacteriol. 186, 3703-3711.   DOI
11 Motaleb, M. A., Sultan, S. Z., Miller, M. R., Li, C. and Charon, N. W. 2011. CheY3 of Borrelia burgdorferi is the key response regulator essential for chemotaxis and forms a long-lived phosphorylated intermediate. J. Bacteriol. 193, 3332-3341.   DOI
12 Muff, T. J. and Ordal, G. W. 2007. The CheC phosphatase regulates chemotactic adaptation through CheD. J. Biol. Chem. 282, 34120-34128.   DOI
13 Murray, T. S. and Shapiro, E. D. 2010. Lyme disease. Clin. Lab. Med. 30, 311-328.   DOI
14 Novak, E. A., Sekar, P., Xu, H., Moon, K. H., Manne, A., Wooten, R. M. and Motaleb, M. A. 2016. The Borrelia burgdorferi CheY3 response regulator is essential for chemotaxis and completion of its natural infection cycle. Cell. Microbiol. 18, 1782-1799.   DOI
15 Novak, E. A., Sultan, S. Z. and Motaleb, M. A. 2014. The cyclic-di-GMP signaling pathway in the Lyme disease spirochete, Borrelia burgdorferi. Front. Cell. Infect. Microbiol. 4, 56.
16 Ohnishi, J., Piesman, J. and de Silva, A. M. 2001. Antigenic and genetic heterogeneity of Borrelia burgdorferi populations transmitted by ticks. Proc. Natl. Acad. Sci. USA. 98, 670-675.   DOI
17 Pal, U., Li, X., Wang, T., Montgomery, R. R., Ramamoorthi, N., Desilva, A. M., Bao, F., Yang, X., Pypaert, M., Pradhan, D., Kantor, F. S., Telford, S., Anderson, J. F. and Fikrig, E. 2004. TROSPA, an Ixodes scapularis receptor for Borrelia burgdorferi. Cell 119, 457-468.   DOI
18 Herzer, P., Fingerle, V., Pfister, H. W. and Krause, A. 2014. [Lyme borreliosis]. Internist (Berl). 55, 789-802; quiz 803-804.   DOI
19 Park, S. Y., Lowder, B., Bilwes, A. M., Blair, D. F. and Crane, B. R. 2006. Structure of FliM provides insight into assembly of the switch complex in the bacterial flagella motor. Proc. Natl. Acad. Sci. USA. 103, 11886-11891.   DOI
20 Hazelbauer, G. L. 2012. Bacterial chemotaxis: the early years of molecular studies. Annu. Rev. Microbiol. 66, 285-303.   DOI
21 Xu, H., Sultan, S., Yerke, A., Moon, K. H., Wooten, R. M. and Motaleb, M. A. 2017. Borrelia burgdorferi CheY2 is dispensable for chemotaxis or motility but crucial for the infectious life cycle of the spirochete. Infect. Immun. 85, e00264-16.
22 van Dam, A. P., Kuiper, H., Vos, K., Widjojokusumo, A., de Jongh, B. M., Spanjaard, L., Ramselaar, A. C., Kramer, M. D. and Dankert, J. 1993. Different genospecies of Borrelia burgdorferi are associated with distinct clinical manifestations of Lyme borreliosis. Clin. Infect. Dis. 17, 708-717.   DOI
23 van Leeuwenhoek, A. 1684. An abstract of a letter from Mr. Anthony Leevvenhoeck at Delft, dated Sep. 17. 1683. Containing some microscopical observations, about animals in the scurf of the teeth, the substance call'd worms in the nose, the cuticula consisting of scales. Philos. Trans. 14, 568-574.   DOI
24 Xu, H., Raddi, G., Liu, J., Charon, N. W. and Li, C. 2011. Chemoreceptors and flagellar motors are subterminally located in close proximity at the two cell poles in spirochetes. J. Bacteriol. 193, 2652-2656.   DOI
25 Xue, F., Yan, J. and Picardeau, M. 2009. Evolution and pathogenesis of Leptospira spp.: lessons learned from the genomes. Microbes Infect. 11, 328-333.   DOI
26 Zhang, K., Liu, J., Tu, Y., Xu, H., Charon, N. W. and Li, C. 2012. Two CheW coupling proteins are essential in a chemosensory pathway of Borrelia burgdorferi. Mol. Microbiol. 85, 782-794.   DOI
27 Zhao, X., Norris, S. J. and Liu, J. 2014. Molecular architecture of the bacterial flagellar motor in cells. Biochemistry 53, 4323-4333.   DOI
28 Dashper, S. G., Seers, C. A., Tan, K. H. and Reynolds, E. C. 2011. Virulence factors of the oral spirochete Treponema denticola. J. Dent. Res. 90, 691-703.   DOI
29 Chen, S., Beeby, M., Murphy, G. E., Leadbetter, J. R., Hendrixson, D. R., Briegel, A., Li, Z., Shi, J., Tocheva, E. I., Muller, A., Dobro, M. J. and Jensen, G. J. 2011. Structural diversity of bacterial flagellar motors. EMBO. J. 30, 2972-2981.   DOI
30 Chevance, F. F. and Hughes, K. T. 2008. Coordinating assembly of a bacterial macromolecular machine. Nat. Rev. Microbiol. 6, 455-465.   DOI
31 de Silva, A. M., Telford, S. R. 3rd, Brunet, L. R., Barthold, S. W. and Fikrig, E. 1996. Borrelia burgdorferi OspA is an arthropod-specific transmission-blocking Lyme disease vaccine. J. Exp. Med. 183, 271-275.   DOI
32 Dombrowski, C., Kan, W., Motaleb, M. A., Charon, N. W., Goldstein, R. E. and Wolgemuth, C. W. 2009. The elastic basis for the shape of Borrelia burgdorferi. Biophys. J. 96, 4409-4417.   DOI
33 Feng, J., Shi, W., Zhang, S., Sullivan, D., Auwaerter, P. G. and Zhang, Y. 2016. A drug combination screen identifies drugs active against amoxicillin-induced round bodies of in vitro Borrelia burgdorferi persisters from an FDA drug library. Front. Microbiol. 7, 743.
34 Rosa, P. A., Tilly, K. and Stewart, P. E. 2005. The burgeoning molecular genetics of the Lyme disease spirochaete. Nat. Rev. Microbiol. 3, 129-143.   DOI
35 Zhao, X., Zhang, K., Boquoi, T., Hu, B., Motaleb, M. A., Miller, K. A., James, M. E., Charon, N. W., Manson, M. D., Norris, S. J., Li, C. and Liu, J. 2013. Cryoelectron tomog raphy reveals the sequential assembly of bacterial flagella in Borrelia burgdorferi. Proc. Natl. Acad. Sci. USA. 110, 14390-14395.   DOI
36 Pitzer, J. E., Sultan, S. Z., Hayakawa, Y., Hobbs, G., Miller, M. R. and Motaleb, M. A. 2011. Analysis of the Borrelia burgdorferi cyclic-di-GMP-binding protein PlzA reveals a role in motility and virulence. Infect. Immun. 79, 1815-1825.   DOI
37 Porter, S. L., Wadhams, G. H. and Armitage, J. P. 2011. Signal processing in complex chemotaxis pathways. Nat. Rev. Microbiol. 9, 153-165.   DOI
38 Radolf, J. D., Caimano, M. J., Stevenson, B. and Hu, L. T. 2012. Of ticks, mice and men: understanding the dual-host lifestyle of Lyme disease spirochaetes. Nat. Rev. Microbiol. 10, 87-99.   DOI
39 Rollend, L., Fish, D. and Childs, J. E. 2013. Transovarial transmission of Borrelia spirochetes by Ixodes scapularis: a summary of the literature and recent observations. Ticks. Tick. Borne. Dis. 4, 46-51.   DOI
40 Rosey, E. L., Kennedy, M. J. and Yancey, R. J. Jr. 1996. Dual flaA1 flaB1 mutant of Serpulina hyodysenteriae expressing periplasmic flagella is severely attenuated in a murine model of swine dysentery. Infect. Immun. 64, 4154-4162.
41 Balmelli, T. and Piffaretti, J. C. 1995. Association between different clinical manifestations of Lyme disease and different species of Borrelia burgdorferi sensu lato. Res. Microbiol. 146, 329-340.   DOI
42 Sal, M. S., Li, C., Motalab, M. A., Shibata, S., Aizawa, S. and Charon, N. W. 2008. Borrelia burgdorferi uniquely regulates its motility genes and has an intricate flagellar hook-basal body structure. J. Bacteriol. 190, 1912-1921.   DOI
43 Sanchez, J. L. 2015. Clinical manifestations and treatment of lyme disease. Clin. Lab. Med. 35, 765-778.   DOI
44 Sanjuan, E., Esteve-Gassent, M. D., Maruskova, M. and Seshu, J. 2009. Overexpression of CsrA (BB0184) alters the morphology and antigen profiles of Borrelia burgdorferi. Infect. Immun. 77, 5149-5162.   DOI
45 Lin, T., Gao L., Zhang, C., Odeh, E., Jacobs, M. B., Coutte, L., Chaconas, G., Philipp, M. T. and Norris, S. J. 2012. Analysis of an ordered, comprehensive STM mutant library in infectious Borrelia burgdorferi: insights into the genes required for mouse infectivity. PLoS One 7, e47532.   DOI
46 Fraser, C. M., Casjens, S., Huang, W. M., Sutton, G. G., Clayton, R., Lathigra, R., White, O., Ketchum, K. A., Dodson, R., Hickey, E. K., Gwinn, M., Dougherty, B., Tomb, J. F., Fleischmann, R. D., Richardson, D., Peterson, J., Kerlavage, A. R., Quackenbush, J., Salzberg, S., Hanson, M., van Vugt, R., Palmer, N., Adams, M. D., Gocayne, J., Weidman, J., Utterback, T., Watthey, L., McDonald, L., Artiach, P., Bowman, C., Garland, S., Fuji, C., Cotton, M. D., Horst, K., Roberts, K., Hatch, B., Smith, H. O. and Venter, J. C. 1997. Genomic sequence of a Lyme disease spirochaete, Borrelia burgdorferi. Nature 390, 580-586.   DOI
47 Garrity, L. F. and Ordal, G. W. 1995. Chemotaxis in Bacillus subtilis: how bacteria monitor environmental signals. Pharmacol. Ther. 68, 87-104.   DOI
48 Bakker, R. G., Li, C., Miller, M. R., Cunningham, C. and Charon, N. W. 2007. Identification of specific chemoattractants and genetic complementation of a Borrelia burgdorferi chemotaxis mutant: flow cytometry-based capillary tube chemotaxis assay. Appl. Environ. Microbiol. 73, 1180-1188.   DOI
49 Ben-Menachem, G., Kubler-Kielb, J., Coxon, B., Yergey, A. and Schneerson, R. 2003. A newly discovered cholesteryl galactoside from Borrelia burgdorferi. Proc. Natl. Acad. Sci. USA 100, 7913-7918.   DOI
50 Bischoff, D. S. and Ordal, G. W. 1992. Bacillus subtilis chemotaxis: a deviation from the Escherichia coli paradigm. Mol. Microbiol. 6, 23-28.   DOI
51 Bockenstedt, L. K., Gonzalez, D., Mao, J., Li, M., Belperron, A. A. and Haberman, A. 2014. What ticks do under your skin: two-photon intravital imaging of Ixodes scapularis feeding in the presence of the lyme disease spirochete. Yale. J. Biol. Med. 87, 3-13.
52 Moon, K. H., Zhao, X., Manne, A., Wang, J., Yu, Z., Liu, J. and Motaleb, M. A. 2016. Spirochetes flagellar collar protein FlbB has astounding effects in orientation of periplasmic flagella, bacterial shape, motility, and assembly of motors in Borrelia burgdorferi. Mol. Microbiol. 102, 336-348.   DOI
53 Liu, J., Lin, T., Botkin, D. J., McCrum, E., Winkler, H. and Norris, S. J. 2009. Intact flagellar motor of Borrelia burgdorferi revealed by cryo-electron tomography: evidence for stator ring curvature and rotor/C-ring assembly flexion. J. Bacteriol. 191, 5026-5036.   DOI
54 Lux, R., Miller, J. N., Park, N. H. and Shi, W. 2001. Motility and chemotaxis in tissue penetration of oral epithelial cell layers by Treponema denticola. Infect. Immun. 69, 6276-6283.   DOI
55 Moon, K. H., Hobbs, G. and Motaleb, M. A. 2016. Borrelia burgdorferi CheD Promotes Various Functions in Chemotaxis and the Pathogenic Life Cycle of the Spirochete. Infect. Immun. 84, 1743-1752.   DOI
56 Motaleb, M. A., Corum, L., Bono, J. L., Elias, A. F., Rosa, P., Samuels, D. S. and Charon, N. W. 2000. Borrelia burgdorferi periplasmic flagella have both skeletal and motility functions. Proc. Natl. Acad. Sci. USA. 97, 10899-10904.   DOI
57 Motaleb, M. A., Liu, J. and Wooten, R. M. 2015. Spirochetal motility and chemotaxis in the natural enzootic cycle and development of Lyme disease. Curr. Opin. Microbiol. 28, 106-113.   DOI
58 Schwan, T. G. and Piesman, J. 2000. Temporal changes in outer surface proteins A and C of the lyme disease-associated spirochete, Borrelia burgdorferi, during the chain of infection in ticks and mice. J. Clin. Microbiol. 38, 382-388.
59 Sapi, E., Kaur, N., Anyanwu, S., Luecke, D. F., Datar, A., Patel, S., Rossi, M. and Stricker, R. B. 2011. Evaluation of in-vitro antibiotic susceptibility of different morphological forms of Borrelia burgdorferi. Infect. Drug. Resist. 4, 97-113.
60 Sarkar, M. K., Paul, K. and Blair, D. 2010. Chemotaxis signaling protein CheY binds to the rotor protein FliN to control the direction of flagellar rotation in Escherichia coli. Proc. Natl. Acad. Sci. USA. 107, 9370-9375.   DOI
61 Shih, C. M., Chao, L. L. and Yu, C. P. 2002. Chemotactic migration of the Lyme disease spirochete (Borrelia burgdorferi) to salivary gland extracts of vector ticks. Am. J. Trop. Med. Hyg. 66, 616-621.   DOI
62 Smith, R. P., Schoen, R. T., Rahn, D. W., Sikand, V. K., Nowakowski, J., Parenti, D. L., Holman, M. S., Persing, D. H. and Steere, A. C. 2002. Clinical characteristics and treatment outcome of early Lyme disease in patients with microbiologically confirmed erythema migrans. Ann. Intern. Med. 136, 421-428.   DOI
63 Sourjik, V. and Wingreen, N. S. 2012. Responding to chemical gradients: bacterial chemotaxis. Curr. Opin. Cell. Biol. 24, 262-268.   DOI
64 Steere, A. C., Duray, P. H. and Butcher, E. C. 1988. Spirochetal antigens and lymphoid cell surface markers in Lyme synovitis. Comparison with rheumatoid synovium and tonsillar lymphoid tissue. Arthritis. Rheum. 31, 487-495.   DOI
65 Steere, A. C., Gross, D., Meyer, A. L. and Huber, B. T. 2001. Autoimmune mechanisms in antibiotic treatment-resistant lyme arthritis. J. Autoimmun. 16, 263-268.   DOI
66 Ko, A. I., Goarant, C. and Picardeau, M. 2009. Leptospira: the dawn of the molecular genetics era for an emerging zoonotic pathogen. Nat. Rev. Microbiol. 7, 736-747.   DOI
67 Motaleb, M. A., Miller, M. R., Li, C., Bakker, R. G., Goldstein, S. F., Silversmith, R. E., Bourret, R. B. and Charon, N. W. 2005. CheX is a phosphorylated CheY phosphatase essential for Borrelia burgdorferi chemotaxis. J. Bacteriol. 187, 7963-7969.   DOI
68 Hovind-Hougen, K. 1984. Ultrastructure of spirochetes isolated from Ixodes ricinus and Ixodes dammini. Yale. J. Biol. Med. 57, 543-548.
69 Karna, S. L., Sanjuan E., Esteve-Gassent, M. D., Miller, C. L., Maruskova, M. and Seshu, J. 2011. CsrA modulates levels of lipoproteins and key regulators of gene expression critical for pathogenic mechanisms of Borrelia burgdorferi. Infect. Immun. 79, 732-744.   DOI
70 Kristich, C. J. and Ordal, G. W. 2002. Bacillus subtilis CheD is a chemoreceptor modification enzyme required for chemotaxis. J. Biol. Chem. 277, 25356-25362.   DOI
71 Kudryashev, M., Cyrklaff, M., Baumeister, W., Simon, M. M., Wallich, R. and Frischknecht, F. 2009. Comparative cryoelectron tomography of pathogenic Lyme disease spirochetes. Mol. Microbiol. 71, 1415-34.   DOI
72 Kuehn, B. M. 2013. CDC estimates 300,000 US cases of Lyme disease annually. JAMA. 310, 1110.   DOI
73 Charon, N. W. and Goldstein, S. F. 2002. Genetics of motility and chemotaxis of a fascinating group of bacteria: the spirochetes. Annu. Rev. Genet. 36, 47-73.   DOI
74 Bockenstedt, L. K. and Wormser, G. P. 2014. Review: unraveling Lyme disease. Arthritis. Rheumatol. 66, 2313-2323.   DOI
75 Chao, X., Muff, T. J., Park, S. Y., Zhang, S., Pollard, A. M., Ordal, G. W., Bilwes, A. M. and Crane, B. R. 2006. A receptor-modifying deamidase in complex with a signaling phosphatase reveals reciprocal regulation. Cell 124, 561-571.   DOI
76 Charon, N. W., Cockburn, A., Li, C., Liu, J., Miller, K. A., Miller, M. R., Motaleb, M. A. and Wolgemuth, C. W. 2012. The unique paradigm of spirochete motility and chemotaxis. Annu. Rev. Microbiol. 66, 349-370.   DOI
77 Adler, B. and de la Pena Moctezuma, A. 2010. Leptospira and leptospirosis. Vet. Microbiol. 140, 287-296.   DOI
78 Aldridge, P. and Hughes, K. T. 2002. Regulation of flagellar assembly. Curr. Opin. Microbiol. 5, 160-165.   DOI
79 Arvikar, S. L. and Steere, A. C. 2015. Diagnosis and treatment of Lyme arthritis. Infect. Dis. Clin. North. Am. 29, 269-280.   DOI
80 Bacon, R. M., Kugeler, K. J. and Mead, P. S. Centers for Disease and Prevention (CDC). 2008. Surveillance for Lyme disease--United States, 1992-2006. MMWR. Surveill. Summ. 57, 1-9.
81 Motaleb, M. A., Miller, M. R., Li, C. and Charon, N. W. 2007. Phosphorylation assays of chemotaxis two-component system proteins in Borrelia burgdorferi. Methods. Enzymol. 422, 438-447.
82 Sze, C. W., Morado, D. R., Liu, J., Charon, N. W., Xu, H. and Li, C. 2011. Carbon storage regulator A (CsrA(Bb)) is a repressor of Borrelia burgdorferi flagellin protein FlaB. Mol. Microbiol. 82, 851-864.   DOI
83 Lambert, A., Picardeau, M., Haake, D. A., Sermswan, R. W., Srikram, A., Adler, B. and Murray, G. A. 2012. FlaA proteins in Leptospira interrogans are essential for motility and virulence but are not required for formation of the flagellum sheath. Infect. Immun. 80, 2019-2025.   DOI
84 Li, C., Bakker, R. G., Motaleb, M. A., Sartakova, M. L., Cabello, F. C. and Charon, N. W. 2002. Asymmetrical flagellar rotation in Borrelia burgdorferi nonchemotactic mutants. Proc. Natl. Acad. Sci. USA. 99, 6169-6174.   DOI
85 Motaleb, M. A., Pitzer, J. E., Sultan, S. Z. and Liu, J. 2011. A novel gene inactivation system reveals altered periplasmic flagellar orientation in a Borrelia burgdorferi fliL mutant. J. Bacteriol. 193, 3324-3331.   DOI
86 Sultan, S. Z., Manne, A., Stewart, P. E., Bestor, A., Rosa, P. A., Charon. N. W. and Motaleb, M. A. 2013. Motility is crucial for the infectious life cycle of Borrelia burgdorferi. Infect. Immun. 81, 2012-2021.   DOI
87 Sultan, S. Z., Pitzer, J. E., Boquoi, T., Hobbs, G., Miller, M. R. and Motaleb, M. A. 2011. Analysis of the HD-GYP domain cyclic dimeric GMP phosphodiesterase reveals a role in motility and the enzootic life cycle of Borrelia burgdorferi. Infect. Immun. 79, 3273-3283.   DOI
88 Sultan, S. Z., Pitzer, J. E., Miller, M. R. and Motaleb, M. A. 2010. Analysis of a Borrelia burgdorferi phosphodiesterase demonstrates a role for cyclic-di-guanosine monophosphate in motility and virulence. Mol. Microbiol. 77, 128-142.   DOI
89 Sultan, S. Z., Sekar, P., Zhao, X., Manne, A., Liu, J., Wooten, R. M. and Motaleb, M. A. 2015. Motor rotation is essential for the formation of the periplasmic flagellar ribbon, cellular morphology, and Borrelia burgdorferi persistence within Ixodes scapularis tick and murine hosts. Infect. Immun. 83, 1765-1777.   DOI
90 Sze, C. W. and Li, C. 2011. Inactivation of bb0184, which encodes carbon storage regulator A, represses the infectivity of Borrelia burgdorferi. Infect. Immun. 79, 1270-1279.   DOI
91 Sze, C. W., Zhang, K., Kariu, T., Pal, U. and Li, C. 2012. Borrelia burgdorferi needs chemotaxis to establish infection in mammals and to accomplish its enzootic cycle. Infect. Immun. 80, 2485-2492.   DOI