• 제목/요약/키워드: Backward state

검색결과 124건 처리시간 0.022초

반복률과 라만매질 압력에 따른 1.54 ${\mu}m$ 전방, 후방 유도라만 및 1.06${\mu}m$ Brillouin 산란광의 출력특성 (Stimulated Raman scattering at 1.54${\mu}m$ and Brillouin scattering at 1.06${\mu}m$ in $CH_4$ under 5 Hz repetition rate)

  • 최영수;전용근;김재기
    • 한국광학회지
    • /
    • 제10권2호
    • /
    • pp.95-101
    • /
    • 1999
  • 1.06$\mu\textrm{m}$ Nd:YAG 펌프레이저의 반복률 5 Hz 이하에서 라만매질 $CH_4$ 의 압력변화에 따른 전방, 후방 1.54 $\mu\textrm{m}$ 유도라만 산란광 및 후방 1.06 $\mu\textrm{m}$ 유도 Brillouin 산란광의 출력특성을 분석하였다. 전방보다 후방 유도라만 산란광이 더 효율적이고, 후방 유도 Brillouin 산란광보다 전방과 후방 유도라만 산란광의 변환효율이 높게 나타났다. 이는 유도라만 산란광의 생성조건이 정상상태이나 Brillouin 산란광은 transient 상태이기 때문이다. 매질 $CH_4$가 순환되지 않을 때, 반복률 5 Hz에서 후방 유도라만 산란광과 Brillouin 산란광의 출력에너지는 라만매질의 열발생으로 모두 약47% 감소하였다. 그러나, 후방에 의한 펌프광의 소모가 감소하여 전방 유도라만 산란광은 오히려 8.5% 증가하였다. 이는 반복률에 따른 열발생이 후방 산란광 생성영역에서 강하게 발생함을 의미한다. 또, 메니스커스형 이색성 집속렌즈를 사용하여 인가에너지 40 mJ에서 유도라만 산란광은 37% 이상의 변환효율을 보였다.

  • PDF

Laplace Transforms of First Exit Times for Compound Poisson Dams

  • Lee, Ji-Yeon
    • 한국데이터정보과학회:학술대회논문집
    • /
    • 한국데이터정보과학회 2005년도 추계학술대회
    • /
    • pp.171-176
    • /
    • 2005
  • An infinite dam with compound Poisson inputs and a state-dependent release rate is considered. We build the Kolmogorov's backward differential equation and solve it to obtain the Laplace transforms of the first exit times for this dam.

  • PDF

반용융 재료의 물성치 평가에 관한 연구(II) -모델재료의 후방압출 실험과 상계해석을 통한 반용융 재료의 유동응력식 결정- (A Study on Material Characterization of Semi-Solid Materials(II) -Determination of Flow Stress For Semi-Solid Materials Using Backward Extrusion Experiment with Model Material and Upper Bound Analysis-)

  • 이주영;김낙수
    • 소성∙가공
    • /
    • 제8권4호
    • /
    • pp.374-383
    • /
    • 1999
  • To determine the flow stress of semi-solid materials, a new combined method has been studied by experimental and analytic technique in the current approach. Using backward extrusion experiment and its numerical analysis, the characterization scheme of semi-solid materials according to the change of initial solid volume fraction has been proposed. Because that solid volume fraction is sensitive to temperature change, it is required to precisely control the temperature setting. Model materials can guarantee the establishment of material characterization technique from the noise due to temperature change. Thus, clay mixed with bonded abrasives was used for experiment and the change of initial solid fraction was copied out through the variation of mixing ratio. Upper bound method was adapted to increase in efficiency of the calculation in numerical analysis and new kinematically admissible velocity field was employed to improve the accuracy of numerical solution. It is thought that the material characterization scheme proposed in this study can be applied to not only semi-solid materials, but also other materials that is difficult to obtain the simple stress state.

  • PDF

Fully nonlinear time-domain simulation of a backward bent duct buoy floating wave energy converter using an acceleration potential method

  • Lee, Kyoung-Rok;Koo, Weoncheol;Kim, Moo-Hyun
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제5권4호
    • /
    • pp.513-528
    • /
    • 2013
  • A floating Oscillating Water Column (OWC) wave energy converter, a Backward Bent Duct Buoy (BBDB), was simulated using a state-of-the-art, two-dimensional, fully-nonlinear Numerical Wave Tank (NWT) technique. The hydrodynamic performance of the floating OWC device was evaluated in the time domain. The acceleration potential method, with a full-updated kernel matrix calculation associated with a mode decomposition scheme, was implemented to obtain accurate estimates of the hydrodynamic force and displacement of a freely floating BBDB. The developed NWT was based on the potential theory and the boundary element method with constant panels on the boundaries. The mixed Eulerian-Lagrangian (MEL) approach was employed to capture the nonlinear free surfaces inside the chamber that interacted with a pneumatic pressure, induced by the time-varying airflow velocity at the air duct. A special viscous damping was applied to the chamber free surface to represent the viscous energy loss due to the BBDB's shape and motions. The viscous damping coefficient was properly selected using a comparison of the experimental data. The calculated surface elevation, inside and outside the chamber, with a tuned viscous damping correlated reasonably well with the experimental data for various incident wave conditions. The conservation of the total wave energy in the computational domain was confirmed over the entire range of wave frequencies.

OpenFOAM의 비압축성 유동 해석정밀도 평가 (EVALUATION OF OPENFAOM IN TERMS OF THE NUMERICAL PRECISION OF INCOMPRESSIBLE FLOW ANALYSIS)

  • 김형민;윤동혁;설광원
    • 한국전산유체공학회지
    • /
    • 제18권2호
    • /
    • pp.49-55
    • /
    • 2013
  • The goal of the research is to evaluate the open source code of OpenFOAM for the use of nuclear plant flow simulation objectively. Of the various incompressible flow solvers, simpleFoam, pimpelFoam are then tested under three validated cases (backward facing step, flow over circular cylinder and turbulent round jet flow). For the evaluation of steady state incompressible laminar flow simulation, low reynolds number of backward facing step flow was solved by simpleFoam. The resultant of the reattached lengths turned out to be similar with the other experimental and simulation results. For transient flow simulation, flow over circular cylinder and turbulent round jet flow were solved by pimpleFoam. The simulation accuracy was evaluated by comparing the resultant flow patterns with the description of the characteristics of the flow over the circular cylinder. The quantitative accuracy was evaluated for no more than 85% by comparing it to the decaying constants of the turbulent round jet velocity.

A PRIORI ERROR ESTIMATES AND SUPERCONVERGENCE PROPERTY OF VARIATIONAL DISCRETIZATION FOR NONLINEAR PARABOLIC OPTIMAL CONTROL PROBLEMS

  • Tang, Yuelong;Hua, Yuchun
    • Journal of applied mathematics & informatics
    • /
    • 제31권3_4호
    • /
    • pp.479-490
    • /
    • 2013
  • In this paper, we investigate a priori error estimates and superconvergence of varitional discretization for nonlinear parabolic optimal control problems with control constraints. The time discretization is based on the backward Euler method. The state and the adjoint state are approximated by piecewise linear functions and the control is not directly discretized. We derive a priori error estimates for the control and superconvergence between the numerical solution and elliptic projection for the state and the adjoint state and present a numerical example for illustrating our theoretical results.

Experimental Study on Internal Flow of a Mini Centrifugal Pump by PIV Measurement

  • Wu, Yulin;Yuan, Huijing;Shao, Jie;Liu, Shuhong
    • International Journal of Fluid Machinery and Systems
    • /
    • 제2권2호
    • /
    • pp.121-126
    • /
    • 2009
  • The internal flow field in a centrifugal pump working at the several flow conditions has been measured by using the particle image velocimetry (PIV) technique with the laser induced fluorescence (LIF) particles and the refractive index matched (RIM) facilities. The impeller of the centrifugal pump has an outlet diameter in 100mm, and consists of six two-dimensional curvature backward swept blades of constant thickness. Measured results give reliable flow patterns in the pump. It is obvious that application of LIF particle and RIM are the key methods to obtain the right PIV measured results in pump internal flow.

Simulation of Voltage and Current Distributions in Transmission Lines Using State Variables and Exponential Approximation

  • Dan-Klang, Panuwat;Leelarasmee, Ekachai
    • ETRI Journal
    • /
    • 제31권1호
    • /
    • pp.42-50
    • /
    • 2009
  • A new method for simulating voltage and current distributions in transmission lines is described. It gives the time domain solution of the terminal voltage and current as well as their line distributions. This is achieved by treating voltage and current distributions as distributed state variables (DSVs) and turning the transmission line equation into an ordinary differential equation. Thus the transmission line is treated like other lumped dynamic components, such as capacitors. Using backward differentiation formulae for time discretization, the DSV transmission line component is converted to a simple time domain companion model, from which its local truncation error can be derived. As the voltage and current distributions get more complicated with time, a new piecewise exponential with controllable accuracy is invented. A segmentation algorithm is also devised so that the line is dynamically bisected to guarantee that the total piecewise exponential error is a small fraction of the local truncation error. Using this approach, the user can see the line voltage and current at any point and time freely without explicitly segmenting the line before starting the simulation.

  • PDF

실시간 다중고장진단 제어기법에 관한 연구 (A Study on Real time Multiple Fault Diagnosis Control Methods)

  • 배용환;배태용;이석희
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1995년도 춘계학술대회 논문집
    • /
    • pp.457-462
    • /
    • 1995
  • This paper describes diagnosis strategy of the Flexible Multiple Fault Diagnosis Module for forecasting faults in system and deciding current machine state form sensor information. Most studydeal with diagnosis control stategy about single fault in a system, this studies deal with multiple fault diagnosis. This strategy is consist of diagnosis control module such as backward tracking expert system shell, various neural network, numerical model to predict machine state and communication module for information exchange and cooperate between each model. This models are used to describe structure, function and behavior of subsystem, complex component and total system. Hierarchical structure is very efficient to represent structural, functional and behavioral knowledge. FT(Fault Tree). ST(Symptom Tree), FCD(Fault Consequence Diagrapy), SGM(State Graph Model) and FFM(Functional Flow Model) are used to represent hierachical structure. In this study, IA(Intelligent Agent) concept is introduced to match FT component and event symbol in diagnosed system and to transfer message between each event process. Proposed diagnosis control module is made of IPC(Inter Process Communication) method under UNIX operating system.

  • PDF