Journal of the Korean Data and Information Science Society
/
v.21
no.5
/
pp.901-908
/
2010
A geometrical description method is proposed to represent the process of the forward selection and backward elimination methods among many variable selection methods for multiple regression models. This graphical method shows the process of the forward selection and backward elimination on the first and second quadrants, respectively, of half circle with a unit radius. At each step, the SSR is represented by the norm of vector and the extra SSR or partial determinant coefficient is represented by the angle between two vectors. Some lines are dotted when the partial F test results are statistically significant, so that statistical analysis could be explored. This geometrical description can be obtained the final regression models based on the forward selection and backward elimination methods. And the goodness-of-fit for the model could be explored.
Korean household debt is one of the main sources of the current financial crisis. This paper studies the impact of household members' attributes such as a type of housing(self-own or rent), education, age, average monthly income of the head of household, and the area of residence, on the stress level of the household members due to household debt. We analyze a real data set collected by KB Kookmin Bank in 2004. We consider low and high stress level as a binary response variable and use a logistic regression model with the attributes of household members as explanatory variables. A simple but well-fitting model is selected by backward elimination method based on the likelihood statistic for goodness-of-fit test, and the impact of the attributes on the stress level is studied from parameter estimates of the selected model. We also perform the similar analysis on a binary response variable which distinguishes households with no debt from the rest. From the analysis, the stress level tends to be low for households with self-own houses, high average monthly income, low education level, and young members.
The Transactions of The Korean Institute of Electrical Engineers
/
v.57
no.6
/
pp.1058-1062
/
2008
In clinical decision support system(CDSS), unlike rule-based expert method, appropriate data-driven machine learning method can easily provide the information of individual feature(clinical test) for disease classification. However, currently developed methods focus on the improvement of the classification accuracy for diagnosis. With the analysis of feature importance in classification, one may infer the novel clinical test sets which highly differentiate the specific diseases or disease states. In this background, we introduce a novel CDSS that integrate a classifier and feature selection module together. Random forest algorithm is applied for the classifier and the feature importance measure. The system selects the significant clinical tests discriminating the diseases by examining the classification error during backward elimination of the features. The superior performance of random forest algorithm in clinical classification was assessed against artificial neural network and decision tree algorithm by using breast cancer, diabetes and heart disease data in UCI Machine Learning Repository. The test with the same data sets shows that the proposed system can successfully select the significant clinical test set for each disease.
Coefficients of determination in logistic regression analysis are defined as various statistics, and their values are relatively smaller than those for linear regression model. These coefficients of determination are not generally used to evaluate and diagnose logistic regression model. Liao and McGee (2003) proposed two adjusted coefficients of determination which are robust at the addition of inappropriate predictors and the variation of sample size. In this work, these adjusted coefficients of determination are applied to variable selection method for logistic regression model and compared with results of other methods such as the forward selection, backward elimination, stepwise selection, and AIC statistic.
Purpose: Respiratory is an essential vital component for conservation of life in human, which is controlled by respiratory muscles and its related neuromuscular regulation. The purpose of this study is to assess lung capacity and respiratory pressure in healthy children, and to investigate relationship and predictability between respiratory pressure and other related respiratory functions. Methods: A total of 31 healthy children were recruited for this study. Demographic information and respiratory related factors were assessed in terms of body surface area (BSA), chest mobility, lung capacity, and respiratory pressure. Correlation between respiratory pressure and the rested variables was analyzed, and multiple regression using the stepwise method was performed for prediction of respiratory muscle strength, in terms of respiratory pressure as the dependent variable, and demographic and other respiratory variables as the independent variable. Results: According to the results of correlation analysis, respiratory pressure showed significant correlation with age (r=0.62, p<0.01), BSA (r=0.80, p<0.01), FVC (r=0.80, p<0.01), and FEV1 (r=0.70, p<0.01). In results of multiple regression analysis using the backward elimination method, BSA and FVC were included as significant factors of the predictable statistical model. The statistical model showed a significant explanation power of 71.8%. Conclusion: These findings suggest that respiratory pressure could be a valuable measurement tool for evaluation of respiratory function, because of significant relationship with physical characteristics and lung capacity, and that BSA and FVC could be possible predictable factors to explain the degree of respiratory pressure. These findings will provide useful information for clinical assessment and treatment in healthy children as well as those with pulmonary disease.
Journal of the Korea Academia-Industrial cooperation Society
/
v.21
no.9
/
pp.373-379
/
2020
The purpose of this study is to investigate the factors affecting change in consumers' consumption tendency and the perception of aged meat. This study compared 2012 and 2019 results from beef consumer surveys. The importance of quality judgment criteria, taste determinants, and the perception that marbling is harmful to health were analyzed using regression analysis through the backward elimination method. As a result of the analysis, it was determined that the importance had increased for recognizing freshness, juiciness, tenderness, and ripening period, and for knowing that marbling was harmful to the health. Also shown was that the intention to purchase aged meat had an influence on whether the consumer favorably perceived the freshness, tenderness, and ripening period. This study analyzed how consumers' consumption tendencies changed to cope with these changes in consumer preferences. The basic data of the research analyzed consumption propensity, the intention to consume beef, and what factors influence the perception of mature meat. It is thought that there is a need to raise awareness about aged meat for diversification of consumer preferences and rational production and consumption in the future.
Proceedings of the Fisheries Business Administration Society of Korea Conference
/
2007.12a
/
pp.167-184
/
2007
The objectives of this paper are to identify the causes of the corporate distress and to develop a distress prediction model with the financial information in fishery industry. In this study, the corporate distress is defined as economic failure and technical insolvency. Economic failure occurs by reduction, shut-down, or change of the business and technical insolvency results from failure to pay the financial debt of companies. The 33 distressed firms from 1991 to 2003 were composed by 14 economic failure companies, 15 technical insolvency companies. 4 companies applied to the both cases. The analysis of distress prediction of fishery companies were accomplished according to the distress definition. The analysis was carried out as two steps. The first step was the univariate analysis, which was used for checking the prediction power of individual financial variable. The t-test is used to identify the differences in financial variables between the distressed group and the non-distressed group. The second step was to develop distress prediction model with logistic regression. The variables showed the significant difference in univariate analysis were selected as the prediction variables. The financial ratios, used in the logistic regression model, were selected by backward elimination method. To test stability of the distress prediction model, the whole sample was divided as three sub-samples, period 1(1990$\sim$1993), period 2(1994$\sim$1997), period 3(1998$\sim$2002). The final model built from whole sample appled each three sub-samples. The results of the logistic analysis were as follows. the growth, profitability, stability ratios showed the significant effect on the distress. the some different result was found in the sub-sample (economic failure and technical insolvency). The growth and the profitability were important to predict the economic failure. The profitability and the activity were important to predict technical insolvency. It means that profitability is the really important factor to the fishery companies.
The objectives of this paper are to identify the causes of the corporate distress and to develop a distress prediction model with the financial information in fishery industry. In this study, the corporate distress is defined as economic failure and technical insolvency. Economic failure occurs by reduction, shut - down, or change of the business and technical insolvency results from failure to pay the financial debt of companies. The 33 distressed firms from 1991 to 2003 were composed by 14 economic failure companies, 15 technical insolvency companies. 4 companies applied to the both cases. The analysis of distress prediction of fishery companies were accomplished according to the distress definition. The analysis was carried out as two steps. The first step was the univariate analysis, which was used for checking the prediction power of individual financial variable. The t - test is used to identify the differences in financial variables between the distressed group and the non - distressed group. The second step was to develop distress prediction model with logistic regression. The variables showed the significant difference in univariate analysis were selected as the prediction variables. The financial ratios, used in the logistic regression model, were selected by backward elimination method. To test stability of the distress prediction model, the whole sample was divided as three sub-samples, period 1(1990 - 1993), period 2(1994 - 1997), period 3(1998 - 2002). The final model built from whole sample appled each three sub - samples. The results of the logistic analysis were as follows. the growth, profitability, stability ratios showed the significant effect on the distress. the some different result was found in the sub - sample (economic failure and technical insolvency). The growth and the profitability were important to predict the economic failure. The profitability and the activity were important to predict technical insolvency. It means that profitability is the really important factor to the fishery companies.
The Journal of Korean Society for School & Community Health Education
/
v.21
no.1
/
pp.61-74
/
2020
Objectives: This study aims to examine hypertension patients' quality of life by using the data of the 7th Korea National Health and Nutrition Examination Survey (1st year, 2016), identify the factors related to this, and utilize the results as basic data for intervention that can improve hypertension patients' quality of life. Methods: For the research subjects, this study extracted 1,531 patients who were diagnosed with hypertension by a doctor from the total sample of 8,150 participants of the 7th Korea National Health and Nutrition Examination Survey, and selected 1,072 patients with no missing value in the variables to be analyzed as the final research subjects. The SPSS(version25.0) program was used for the analysis of the collected data. Then, this study used a backward elimination multiple regression analysis method that applied complex sample, to examine the factors related with the finally estimated quality of life. Results: The results of this study revealed that hypertension patients' quality of life was related with age, occupation, spouse, household income, weight gain, restriction of activity, subjected health status, perceived stress, and presence of comorbidity. The final model explained 37.0% of the variance (Wald F=30.012 p<.001). Conclusions: When an intervention program is implemented for the improvement of hypertension patients' quality of life in the future, it will be effective to construct the program according to age group, employment, marital status and household income. As for the program operation, patients should get help therefrom to control weight, facilitate activities and relieve their stress, and they should be also motivated to feel healthy. Furthermore, education should be offered so that they appropriately manage their underlying disease at an early stage.
Purpose The purpose of this study is to develop a prediction model and decision rules for the elderly's suicidal ideation based on the Korean Welfare Panel survey data. By utilizing this data, we obtained many decision rules to predict the elderly's suicide ideation. Design/methodology/approach This study used classification analysis to derive decision rules to predict on the basis of decision tree technique. Weka 3.8 is used as the data mining tool in this study. The decision tree algorithm uses J48, also known as C4.5. In addition, 66.6% of the total data was divided into learning data and verification data. We considered all possible variables based on previous studies in predicting suicidal ideation of the elderly. Finally, 99 variables including the target variable were used. Classification analysis was performed by introducing sampling technique through backward elimination and data balancing. Findings As a result, there were significant differences between the data sets. The selected data sets have different, various decision tree and several rules. Based on the decision tree method, we derived the rules for suicide prevention. The decision tree derives not only the rules for the suicidal ideation of the depressed group, but also the rules for the suicidal ideation of the non-depressed group. In addition, in developing the predictive model, the problem of over-fitting due to the data imbalance phenomenon was directly identified through the application of data balancing. We could conclude that it is necessary to balance the data on the target variables in order to perform the correct classification analysis without over-fitting. In addition, although data balancing is applied, it is shown that performance is not inferior in prediction rate when compared with a biased prediction model.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.