• Title/Summary/Keyword: Backscattering strength

Search Result 60, Processing Time 0.036 seconds

Distribution of Seagrass (Zostera marina) Beds and High Frequency Backscattering Characteristics by Photosynthesis (잘피 서식지의 분포와 광합성에 의한 고주파 후방산란 특성)

  • Yoon Kwan-Seob;La Hyoung Sul;Na Jungyul;Lee Jae-Hyuk
    • The Journal of the Acoustical Society of Korea
    • /
    • v.23 no.8
    • /
    • pp.562-569
    • /
    • 2004
  • An experiment for observation of the distribution of the seagrass (zostera marina) beds and characteristics of high-frequency backscattering by the photosynthesis was conducted off the coast. Acoustic data were taken as a function of the grazing angles and the relative azimuth angles on the seagrass beds of which bottom type was sandy-mud. The transmitted source signal was a 120 kHz CW waveform. Mapping of the seagrass beds distribution was drawn up using the seagrass backscattering strength with azimuth and grazing angles. The result of the comparison backscattering strength distribution of the seagrass beds was shown to be the similar to the photograph of real seagrass beds. The seagrass backscattering strength was also compared between day and night to verify the effects of the acoustical scattering by the bubbles of Photosynthetic oxygen formed on the seagrass. In these results. it is clear that observation of the seagrass beds between day and night showed the different characteristics because the bubbles of Photosynthetic oxygen affect the acoustical scattering.

Measurements of Backscattering Strength from Various Shapes of Sediment Surfaces and Layers (퇴적층 구성 매질 및 표면 형태에 따른 후방산란 강도 측정)

  • 김형수;최지웅;나정열;석동우
    • The Journal of the Acoustical Society of Korea
    • /
    • v.22 no.1
    • /
    • pp.78-87
    • /
    • 2003
  • High-frequency (126-㎑) bottom backscattering measurements with various bottom types were conducted at the water tank in Ocean Acoustic Laboratory, Hanyang University. For the purpose of investigating the energy distribution of bottom scattering with various bottom types, the sediment was varied with gravel, sand, sandy mud and mixed bottoms. To examine the anisotropic nature of the scattering due to the orientations of bottom ripple, the footprints were made transverse and longitudinal to the direction of incident wave. The total scattering characteristics are that the larger grazing angles the larger backscattering strengths become and backscattering strengths for a transverse ripple case are higher than those of longitudinal ripple case. finally, the variations of scattering strength depend mainly on the ripple's orientation.

Characteristics of Backscattering of Harmful Algae Using Underwater Ultrasound (수중 초음파를 이용한 적조 플랑크톤의 후방산란 특성)

  • Kim Eunhye;Bok Tae-hoon;Na Jungyul;Paeng Dong-Guk
    • The Journal of the Acoustical Society of Korea
    • /
    • v.24 no.8
    • /
    • pp.447-453
    • /
    • 2005
  • Laboratory measurements were performed in a uni-algae medium Cochlodinium polykrikoides (Phytoplankton, dinoflagellates) using an Underwater Ultrasound $(5\~15\;MHz)$ to study Characteristics of Acoustic Backscattering of Harmful algae. In an effort to detect the harmful algal scatterers with population density of less than 300 cells/ml that corresponds to the precaution stage of red tide, backscattered signals from various scatterer-density samples were obtained and analyzed. Correlations between volume backscattering strength (Sv) and population density (cells/ml) of scatterers in the medium have been investigated. Comparison of Volume Backscattering Strengths calculated with the fluid-sphere model [1] and the measured values showed an agreement.

Species Identification and Noise Cancellation Using Volume Backscattering Strength Difference of Multi-Frequency (다중 주파술의 체적산란강도 차이를 이용한 에코그램 내에서의 종 분리와 잡음 제거)

  • KANG Donhyug;SHIN Hyoung-Chul;KIM Suam;LEE Yoonho;HWANG Doojin
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.36 no.5
    • /
    • pp.541-548
    • /
    • 2003
  • Species identification in hydroacoustic survey is one of the key requirements to estimate biomass of organism and to understand the structure of zooplankton community. Feasibility of species identification using two frequencies (38 and 120 kHz) was investigated on the basis of mean volume backscattering strength difference (MVBS). Virtual echogram technique was applied to two frequencies data sets that obtained from surveys in the Antarctic Ocean and Yellow Sea. Virtual echogram method using MVBS revealed the possibility of species identification, which species identification relying on visual scrutiny of single frequency acoustic data resulted in significant errors in biomass estimation. Through noise cancellation using MVBS, much of the acoustic noise caused by acoustic instruments could be removed in new virtual echogram, and the biomass estimation and data quality was improved.

RELATIONSHIP BETWEEN FOREST STAND PARAMETERS AND MULTI-BAND SAR BACKSCATTERING

  • Shin, Jung-Il;Yoon, Jong-Suk;Lee, Kyu-Sung
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.332-335
    • /
    • 2008
  • Newly developing SAR (Synthetic Aperture Radar) sensors commonly include high resolution X-band those data are expected to contribute various applications. Recent few studies are presenting potential of X-band SAR data in forest related application. This study tried to investigate the relationship between forest stand parameters and multi-band SAR normalized backscattering. Multi-band SAR data was radiometric corrected to compare signal from different forest stand condition. Then correlation coefficients were estimated between attribute of forest stand map and normalized backscattering coefficients. Although overall correlation coefficients are not high, only X-band shows strong relationship with DBH class than other bands. The signal of C- and L-band is composed of a large number of discrete tree components such as leaves, stems, even background soil. In forest, strength of radar backscattering is affected by complex parameters. Further study might be considered more various forest stand parameters such as canopy density, stand height, volume, and biomass.

  • PDF

Characteristics of High Frequency Backscattering Strength by Zostera Marina (Seagrass) Bed (거머리말 (잘피) 서식지의 고주파 후방산란 특성)

  • Yoon Kwan-Seob;Na Jungyul;La Hyoungsul
    • The Journal of the Acoustical Society of Korea
    • /
    • v.24 no.2
    • /
    • pp.97-102
    • /
    • 2005
  • Acoustic experiments were performed with Zostera marina to study the characteristics of backscattering of seagrass living in the bottom interface. Field experiments were conducted in the Dongdae man, Namhae for day and night to consider the effects of air-bubble from photosynthesis of seagrass. The multi-frequency (30$\~$120 kHz) responses were measured and the distributions of back scattering strength due to the movement of seagrass were Presented by PDF (probability density function) at 120 120 kHz. The results were shown both the frequency dependence and diurnal variation of the backscattering strength between day and night. This diurnal variation may be caused by the amount of oxygen in dissolved bubbles formed by Photosynthesis of seagrass.

5-MHz Volume Backscattering Strength Measurements from Suspended Sediment Concentrations (5 MHz 신호를 이용한 부유물의 농도에 따른 후방산란강도 측정)

  • Lee, Changil;Choi, Jee Woong
    • The Journal of the Acoustical Society of Korea
    • /
    • v.32 no.1
    • /
    • pp.14-21
    • /
    • 2013
  • The erosion, suspension, and transport of sediment frequently occur in the coastal waters and estuarine. These processes often generate the so-called fluid mud layer, which is defined as a high-concentration aqueous suspension of fine grained sediment (> 10 g/l), consisting mainly of silt and clay-size particles. Therefore the high-resolution ultrasound is mostly used to detect or monitor the fluid mud layer. Because the sound attenuation tends to increase rapidly with the suspended sediment concentration, it is necessary to consider the accurate attenuation correction to estimate the backscattering strengths from the suspended sediment layers. In this paper, the volume backscattering strengths with various suspended sediment concentrations were measured using 5-MHz ultrasound signal in a small-scale water tank. The sound attenuation due to the viscosity and scattering from suspended sediment particles was predicted by the Richard's model and applied to the sonar equation to estimate the volume backscattering strengths from the suspended sediment concentrations. For the case that the additional attenuation was not considered, the volume backscattering strengths increased to the concentration of 20 g/l, and over this point, the backscattering strengths were roughly constant. However, for the case that the attenuation due to the suspended sediment concentration was considered, the backscattering strengths increased with the concentration.

Investigations of the Potential Fisheries Resources in the Southern Waters of Korea - Hydroacoustic Investigations of Abundance and Distributing of Fish - (한국 남해안의 잠재어업자원 조사연구 - 어업생물자원의 음향학적 조사 -)

  • Lee, Dae-Jae;Kim, Jin-Geon;Sin, Hyeong-Ho
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.34 no.3
    • /
    • pp.259-273
    • /
    • 1998
  • The hydroacoustic surveys to provide the essential information for the assessment, management and utilization of fishery resources in the southern waters of Korea were carried out during five research cruises between October 1996 and October 1997 by the training ship KAYA of Pukyong National University. These hydroacoustic investigations were designed to obtain more precise estimates of the geographic distribution, absolute abundance and biological characteristics of the fishery resources, and the vertically integrated densities of fish in terms of volume backscattering strength(SV) by survey region and depth bins, such as the entire water column and the 0~ 10 m from bottom fraction, were measured separately. Hydroacoustic data were collected by using a Simrad EK 500 Scientific echo sounder operating at two frequencies of 38kHz and 120kHz and the data stored in field were later processed on a HP PC using a Simrad EP 500 echo integration and target strength analysis system. The biological compositions of echo signal were identified and sampled using a demersal trawl during daylight hours. The mean target strength to scale the echo integration data for hydroacoustic surveys was derived from the relationship between the SV and the weight of trawl catch per unit volume of the water column sampled by demersal trawls. The results obtained can be summarized as follow : 1. The mean volume backscattering strength for the entire water column in the southern waters of Korea between 1996 and 1997 were -67.2 dB and -70.9 dB at two frequencies of 38 kHz and 120 kHz , respectively, and for the bottom layer of the 0-10 m from bottom friction were -68.8 dB, -70.2 dB, respectively. That is, the volume backscattering strength for the entire water column at low frequency was higher than that at high frequency. 2. The relationship between the mean backscattering strength (〈SV〉, dB) for the depth strata of trawl hauls and the weight (C, kg/m3) per cubic meter of the catch sampled by bottom trawling in the southern waters of Korea in January and July 1997 were expressed by the following equations: 38 kHz : 〈SV〉= -28.2 + 10 log(C), 120 kHz : 〈SV〉= -32.4 + 10 log(C). The mean weight -normalized target strengths derived from these equitions were -28.2 dB/ kg, -32.4 dB/ kg at 38 kHz and 120 kHz , respectively. That is, the mean weight -normalized target strength at 38 kHz was 4.2 dB higher than that at 120 kHz. 3. The distribution density of fish in terms of biomass per unit volume in the southern waters of Korea were estimated to be 125.9 $\times$ 10-6 kg/m3 and 141.3 $\times$ 10-6 kg/m3 at 38 kHz and 120 kHz , respectively.

  • PDF

Acoustic-Trawl Surveys for Demersal Fisheries Resources in the East China Sea (동지나해 저서어업자원의 조사연구)

  • 윤갑동
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.29 no.3
    • /
    • pp.183-190
    • /
    • 1993
  • A cooperative Korea-Japan investigation for the demersal fisheries resources of the East China Sea carried out by using the training ship Oshoro Maru belong to Hok-kaido University, Japan, during 1-8 November, 1991. The research vessel sampled 15 stations with demersal trawls on the East China Sea, and 1,364 nautical miles of track line were surveyed hydroacoustically. The hydroacoustic observations were taken with a scientific echo sounder operating at two frequencies of 25 kHz and 100 kHz, and a microcomputer-based echo integrator. Fish samples were collected by demersal trawling, and temperature, salinity and dissolved oxygen were measured with a CTD system. The target strength of fish school was estimated from the relationship between mean scattering strength and catches caught by demersal trawling. The results obtained can be summarized as follows: 1. The mean backscattering strength for 15 layers occupied by demersal trawls at 25 kHz ranged from -70.4 dB to -59.1 dB. Then the catch per one hour ranged from 8.2 to 587.5 kg/hour. 2. The mean backscattering strength for the entire layer between transducer and seabed in the survey area of the East China Sea at 25 kHz and 100 kHz were -68.0 dB and -73.1 dB, respectively. 3. The mean fish-school target strength per one kilogram at 25 kHz and 100 kHz were -28.3 dB/kg, and -30.4 dB/kg, respectively.

  • PDF

Acoustic Scattering Layers in the East China Sea ( 2 ) -Vertical Distribution of Volume Scattering Strength- (동지나해의 초음파 산란층에 관한 연구 ( 2 ) -체적산란강도의 연직분포-)

  • 이대재
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.26 no.1
    • /
    • pp.20-25
    • /
    • 1990
  • During the summer of 1989, the authors carried out the hydroacoustic surverys to investigate the vertical distribution of volume backscattering strength in the East China Sea and simultaneously the biological sampling of the scattering layers by bottom trawling. The echoes from the scattering layers was continuously measured by using a 50 kHz echo sounder during the day and night. A data acquisition system was used to record digitally the envelope of the echoes and the echo integration technique was used to determine the scattering strength proportional to biomass density in each layer. The vertical profiles of volume backscattering strength also were compared with the one of water temperature. The results obtained can be summarized as follows: 1. The vertical profiles of mean volume backscattering strength at day and night suggested that during the night the biggest fish concentrations appeared in the mixed layer above the thermocline and during the day near the bottom. In another profiles where the thermocline was not well developed, peaks in scattering appeared at midwater depths and near the bottom. 2. The maximum values of mean volume backscattering strengths varied from -49.3 dB to -48.0 dB on different regions and at different times of the day and night. 3. Trawl data indicated that the organisms consisting of the scattering layer near the bottom were squid and various species of demersal fishes.

  • PDF