• Title/Summary/Keyword: Backpropagation neural networks

Search Result 230, Processing Time 0.037 seconds

A study on the Adaptive Controller with Chaotic Dynamic Neural Networks

  • Kim, Sang-Hee;Ahn, Hee-Wook;Wang, Hua O.
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.7 no.4
    • /
    • pp.236-241
    • /
    • 2007
  • This paper presents an adaptive controller using chaotic dynamic neural networks(CDNN) for nonlinear dynamic system. A new dynamic backpropagation learning method of the proposed chaotic dynamic neural networks is developed for efficient learning, and this learning method includes the convergence for improving the stability of chaotic neural networks. The proposed CDNN is applied to the system identification of chaotic system and the adaptive controller. The simulation results show good performances in the identification of Lorenz equation and the adaptive control of nonlinear system, since the CDNN has the fast learning characteristics and the robust adaptability to nonlinear dynamic system.

An Emphirical Closed Loop Modeling of a Suspension System using a Neural Networks (신경회로망을 이용한 폐회로 현가장치의 시스템 모델링)

  • 김일영;정길도;노태수;홍동표
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.384-388
    • /
    • 1996
  • The closed-loop system modeling of an Active/semiactive suspension system has been accomplished through an artificial neural Networks. The 7DOF full model as the system equation of motion has been derived and the output feedback linear quadratic regulator has been designed for the control purpose. For the neural networks training set of a sample data has been obtained through the computer simulation. A 7DOF full model with LQR controller simulated under the several road conditions such as sinusoidal bumps and the rectangular bumps. A general multilayer perceptron neural network is used for the dynamic modeling and the target outputs are feedback to the input layer. The Backpropagation method is used as the training algorithm. The modeling of system and the model validation have been shown through computer simulations.

  • PDF

An efficient learning algorithm of nonlinear PCA neural networks using momentum (모멘트를 이용한 비선형 주요성분분석 신경망의 효율적인 학습알고리즘)

  • Cho, Yong-Hyun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.3 no.4
    • /
    • pp.361-367
    • /
    • 2000
  • This paper proposes an efficient feature extraction of the image data using nonlinear principal component analysis neural networks of a new learning algorithm. The proposed method is a learning algorithm with momentum for reflecting the past trends. It is to get the better performance by restraining an oscillation due to converge the global optimum. The proposed algorithm has been applied to the cancer image of $256{\times}256$ pixels and the coin image of $128{\times}128$ pixels respectively. The simulation results show that the proposed algorithm has better performances of the convergence and the nonlinear feature extraction, in comparison with those using the backpropagation and the conventional nonlinear PCA neural networks.

  • PDF

Direct Adaptive Control Based on Neural Networks Using An Adaptive Backpropagation Algorithm (적응 역전파 학습 알고리즘을 이용한 신경회로망 제어기 설계)

  • Choi, Kyoung-Mi;Choi, Yoon-Ho;Park, Jin-Bae
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1730-1731
    • /
    • 2007
  • In this paper, we present a direct adaptive control method using neural networks for the control of nonlinear systems. The weights of neural networks are trained by an adaptive backpropagation algorithm based on Lyapunov stability theory. We develop the parameter update-laws using the neural network input and the error between the desired output and the output of nonlinear plant to update the weights of a neural network in the sense that Lyapunove stability theory. Beside the output tracking error is asymptotically converged to zero.

  • PDF

Backpropagation Classification of Statistically

  • Kim, Sungmo;Kim, Byungwhan
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.46.2-46
    • /
    • 2002
  • Plasma processing plays a crucial role in fabricating integrated circuits (ICs). Manufacturing ICs in a cost effective way, it is increasingly demanded a computer model that predicts plasma properties to unknown process inputs. Physical models are limited in the prediction accuracy since they are subject to many assumptions. Expensive computation time is another hindrance that prevents their widespread used in manufacturing site. To circumvent these difficulties inherent in physical models, neural networks have been used to learn nonlinear plasma data [1]. Among many types of networks, a backpropagation neural network (BPNN) is the most widely used architecture. Many training variables are...

  • PDF

Artificial Neural Networks for Interest Rate Forecasting based on Structural Change : A Comparative Analysis of Data Mining Classifiers

  • Oh, Kyong-Joo
    • Journal of the Korean Data and Information Science Society
    • /
    • v.14 no.3
    • /
    • pp.641-651
    • /
    • 2003
  • This study suggests the hybrid models for interest rate forecasting using structural changes (or change points). The basic concept of this proposed model is to obtain significant intervals caused by change points, to identify them as the change-point groups, and to reflect them in interest rate forecasting. The model is composed of three phases. The first phase is to detect successive structural changes in the U. S. Treasury bill rate dataset. The second phase is to forecast the change-point groups with data mining classifiers. The final phase is to forecast interest rates with backpropagation neural networks (BPN). Based on this structure, we propose three hybrid models in terms of data mining classifier: (1) multivariate discriminant analysis (MDA)-supported model, (2) case-based reasoning (CBR)-supported model, and (3) BPN-supported model. Subsequently, we compare these models with a neural network model alone and, in addition, determine which of three classifiers (MDA, CBR and BPN) can perform better. For interest rate forecasting, this study then examines the prediction ability of hybrid models to reflect the structural change.

  • PDF

A Controlled Neural Networks of Nonlinear Modeling with Adaptive Construction in Various Conditions (다변 환경 적응형 비선형 모델링 제어 신경망)

  • Kim, Jong-Man;Sin, Dong-Yong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07b
    • /
    • pp.1234-1238
    • /
    • 2004
  • A Controlled neural networks are proposed in order to measure nonlinear environments in adaptive and in realtime. The structure of it is similar to recurrent neural networks: a delayed output as the input and a delayed error between tile output of plant and neural networks as a bias input. In addition, we compute the desired value of hidden layer by an optimal method instead of transfering desired values by backpropagation and each weights are updated by RLS(Recursive Least Square). Consequently, this neural networks are not sensitive to initial weights and a learning rate, and have a faster convergence rate than conventional neural networks. This new neural networks is Error Estimated Neural Networks. We can estimate nonlinear models in realtime by the proposed networks and control nonlinear models. To show the performance of this one, we have various experiments. And this controller call prove effectively to be control in the environments of various systems.

  • PDF

Nonlinear Neural Networks for Vehicle Modeling Control Algorithm based on 7-Depth Sensor Measurements (7자유도 센서차량모델 제어를 위한 비선형신경망)

  • Kim, Jong-Man;Kim, Won-Sop;Sin, Dong-Yong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.525-526
    • /
    • 2008
  • For measuring nonlinear Vehicle Modeling based on 7-Depth Sensor, the neural networks are proposed m adaptive and in realtime. The structure of it is similar to recurrent neural networks; a delayed output as the input and a delayed error between the output of plant and neural networks as a bias input. In addition, we compute the desired value of hidden layer by an optimal method instead of transfering desired values by backpropagation and each weights are updated by RLS(Recursive Least Square). Consequently, this neural networks are not sensitive to initial weights and a learning rate, and have a faster convergence rate than conventional neural networks. This new neural networks is Error Estimated Neural Networks. We can estimate nonlinear models in realtime by the proposed networks and control nonlinear models.

  • PDF

A Channel Management Technique using Neural Networks in Wireless Networks (신경망을 이용한 무선망에서의 채널 관리 기법)

  • Ro Cheul-Woo;Kim Kyung-Min;Lee Kwang-Eui
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.6
    • /
    • pp.1032-1037
    • /
    • 2006
  • The channel is one of the precious and limited resources in wireless networks. There are many researches on the channel management. Recently, the optimization problem of guard channels has been an important issue. In this paper, we propose an intelligent channel management technique based on the neural networks. An SRN channel allocation model is developed to generate the learning data for the neural networks and the performance analysis of system. In the proposed technique, the neural network is trained to generate optimal guard channel number g, using backpropagation supervised learning algorithm. The optimal g is computed using the neural network and compared to the g computed by the SRM model. The numerical results show that the difference between the value of 8 by backpropagation and that value by SRM model is ignorable.

A Backpropagation Learning Algorithm for pRAM Networks (pRAM회로망을 위한 역전파 학습 알고리즘)

  • 완재희;채수익
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.31B no.1
    • /
    • pp.107-114
    • /
    • 1994
  • Hardware implementation of the on-chip learning artificial neural networks is important for real-time processing. A pRAM model is based on probabilistic firing of a biological neuron and can be implemented in the VLSI circuit with learning capability. We derive a backpropagation learning algorithm for the pRAM networks and present its circuit implementation with stochastic computation. The simulation results confirm the good convergence of the learning algorithm for the pRAM networks.

  • PDF