• Title/Summary/Keyword: Backpropagation algorithm

Search Result 351, Processing Time 0.034 seconds

The Study on the Method which escapee from Local maxima of Error-Backpropagation Algorithm (오류역전파 알고리즘의 Local maxima를 탈출하기 위한 방법에 관한 연구)

  • 서원택;조범준
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2001.10b
    • /
    • pp.313-315
    • /
    • 2001
  • 본 논문에서 소개하는 알고리즘을 은닉층의 뉴런의 수를 학습하는 동안 동적으로 변화시켜 역전파 알고리즘의 단점인 Local maxima를 탈출하고 또한 은닉층의 뉴런의 수를 결정하는 과정을 없애기 위해 연구되었다. 본 알고리즘의 성능을 평가하기 위해 두 가지 실험에 적용하였는데 첫번째는 Exclusive-OR 문제이고 두번째는 7$\times$8 한글 자음과 모음의 폰트 학습에 적용하였다. 이 실험의 결과로 네트웍이 local maxima에 빠져드는 확률이 줄어드는 것을 알 수 있었고 학습속도 또한 일반적인 역전파 알고리즘보다 빠른 것으로 증명되었다.

  • PDF

Speed-Sensorless Vector Control of an Induction Motor Using Neural Network (신경망을 이용한 유도 전동기의 센서리스 속도제어)

  • Kim, Jung-Gon;Park, Seong-Wook;Seo, Bo-Hyeok
    • Proceedings of the KIEE Conference
    • /
    • 2002.07d
    • /
    • pp.2149-2151
    • /
    • 2002
  • In this paper, a novel speed estimation method of an induction motor using neural networks(NNs) is presented. The NN speed estimator is trained online by using the error backpropagation algorithm, and the training starts simultaneously with the induction motor working. The neural network based vector controller has the advantage of robustness against machine parameter variation. The simulation results using Matlab/Simulink verify the useful of the proposed method.

  • PDF

Neuro-Fuzzy Controller Design for Boiler-Turbine System (보일러-터빈 시스템을 위한 뉴로-퍼지 지능제어기 설계)

  • Jo, Kyoung-Wan;Kim, Sang-Woo
    • Proceedings of the KIEE Conference
    • /
    • 1998.07b
    • /
    • pp.474-476
    • /
    • 1998
  • In this paper, a multi variable neuro-fuzzy controller for a boiler-turbine system is designed. Two architectures are used. The first consists of boiler-turbine system identification and the second is designing a controller. A generalized backpropagation algorithm is developed and used to train the neuro-fuzzy controller. Designed controller is good tracking property and rejects the input and output disturbances. The results of the proposed design method is verified through simulation.

  • PDF

Implementation of Backpropagation Algorithm For Flexible Factory Environment Control (시설 재배용 실내 환경 제어를 위한 역전파 알고리즘 적용)

  • Kong, Whue-Sik
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.833-834
    • /
    • 2006
  • In this paper, It is proposed collecting, processing, and learning of data with PIC16F877 and Acode 300[3], constructing database in PC. The PIC16F877 microcontroller nodes are the radio sensor and the DC motor controller. The PC of flexible factory level construct the data-table for object-oriented optimal environment control. The DC Motor control command is decision with back-propagation.

  • PDF

Neural-Network and Log-Polar Sampling Based Associative Pattern Recognizer for Aircraft Images (신경 회로망과 Log-Polar Sampling 기법을 사용한 항공기 영상의 연상 연식)

  • 김종오;김인철;진성일
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.28B no.12
    • /
    • pp.59-67
    • /
    • 1991
  • In this paper, we aimed to develop associative pattern recognizer based on neural network for aircraft identification. For obtaining invariant feature space description of an object regardless of its scale change and rotation, Log-polar sampling technique recently developed partly due to its similarity to the human visual system was introduced with Fourier transform post-processing. In addition to the recognition results, image recall was associatively performed and also used for the visualization of the recognition reliability. The multilayer perceptron model was learned by backpropagation algorithm.

  • PDF

A Desing of position controller for manipulator using Adaptive neural network (적응 신경망을 이용한 동적 매니퓰레이터의 위치제어 설계)

  • Cho, Hyun-Seob;Ryu, In-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1574-1575
    • /
    • 2007
  • "Dynamic Neural Unit"(DNU) based upon the topology of a reverberating circuit in a neuronal pool of the central nervous system. In this thesis, we present a genetic DNU-control scheme for unknown nonlinear systems. Our methodis different from those using supervised learning algorithms, such as the backpropagation (BP) algorithm, that needs training information in each step. The contributions of this thesis are the new approach to constructing neural network architecture and its trainin.

  • PDF

Backpropagation Algorithm based Fault Detection Model of Solar Power Generation using Weather Data and Solar Power Generation Data (기후데이터와 태양광발전 데이터를 이용한 역전파 알고리즘 기반 패널 결함 검출 방법)

  • Lee, Seung Min;Lee, Woo Jin
    • Annual Conference of KIPS
    • /
    • 2015.04a
    • /
    • pp.795-797
    • /
    • 2015
  • 태양광발전의 단점 중 하나인 불규칙 전력 생산문제로 인해, 장비 및 패널 결함에 실시간 대응하지 못하는 문제가 발생한다. 태양광패널 결함을 자동 검출하기 위해 기후데이터 및 패널 정보를 이용하여 신경망에 적용하고 역전과 알고리즘을 통해 학습하는 발전량 예측 및 실시간 결함 검출 모델을 제안한다.

An accelerated Levenberg-Marquardt algorithm for feedforward network

  • Kwak, Young-Tae
    • Journal of the Korean Data and Information Science Society
    • /
    • v.23 no.5
    • /
    • pp.1027-1035
    • /
    • 2012
  • This paper proposes a new Levenberg-Marquardt algorithm that is accelerated by adjusting a Jacobian matrix and a quasi-Hessian matrix. The proposed method partitions the Jacobian matrix into block matrices and employs the inverse of a partitioned matrix to find the inverse of the quasi-Hessian matrix. Our method can avoid expensive operations and save memory in calculating the inverse of the quasi-Hessian matrix. It can shorten the training time for fast convergence. In our results tested in a large application, we were able to save about 20% of the training time than other algorithms.

Adaptive Control of Nonlinear Systems through Improvement of Learning Speed of Neural Networks and Compensation of Control Inputs (신경망의 학습속도 개선 및 제어입력 보상을 통한 비선형 시스템의 적응제어)

  • 배병우;전기준
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.43 no.6
    • /
    • pp.991-1000
    • /
    • 1994
  • To control nonlinear systems adaptively, we improve learning speed of neural networks and present a novel control algorithm characterized by compensation of control inputs. In an error-backpropagation algorithm for tranining multilayer neural networks(MLNN's) the effect of the slope of activation functions on learning performance is investigated and the learning speed of neural networks is improved by auto-adjusting the slope of activation functions. The control system is composed of two MLNN's, one for control and the other for identification, with the weights initialized by off-line training. The control algoritm is modified by a control strategy which compensates the control error induced by the indentification error. Computer simulations show that the proposed control algorithm is efficient in controlling a nonlinear system with abruptly changing parameters.

Model Predictive Control of Discrete-Time Chaotic Systems Using Neural Network (신경회로망을 이용한 이산치 혼돈 시스템의 모델 예측제어)

  • Kim, Se-Min;Choi, Yoon-Ho;Park, Jin-Bae;Joo, Young-Hoon
    • Proceedings of the KIEE Conference
    • /
    • 1999.07b
    • /
    • pp.933-935
    • /
    • 1999
  • In this paper, we present model predictive control scheme based on neural network to control discrete-time chaotic systems. We use a feedforward neural network as nonlinear prediction model. The training algorithm used is an adaptive backpropagation algorithm that tunes the connection weights. And control signal is obtained by using gradient descent (GD), some kind of LMS method. We identify that the system identification results through model prediction control have a great effect on control performance. Finally, simulation results show that the proposed control algorithm performs much better than the conventional controller.

  • PDF