• 제목/요약/키워드: Backpropagation Neural Network

검색결과 449건 처리시간 0.03초

신경회로망과 위치 검출장치를 사용한 로보트 추적 제어기의 구현 (A neural network based real-time robot tracking controller using position sensitive detectors)

  • 박형권;오세영;김성권
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1993년도 한국자동제어학술회의논문집(국내학술편); Seoul National University, Seoul; 20-22 Oct. 1993
    • /
    • pp.660-665
    • /
    • 1993
  • Neural networks are used in the framework of sensorbased tracking control of robot manipulators. They learn by practice movements the relationship between PSD ( an analog Position Sensitive Detector) sensor readings for target positions and the joint commands to reach them. Using this configuration, the system can track or follow a moving or stationary object in real time. Furthermore, an efficient neural network architecture has been developed for real time learning. This network uses multiple sets of simple backpropagation networks one of which is selected according to which division (corresponding to a cluster of the self-organizing feature map) in data space the current input data belongs to. This lends itself to a very fast training and processing implementation required for real time control.

  • PDF

신경회로망을 이용한 WMR의 가변제어기 설계 (Design of variable controller for WMR using a Neural Network)

  • 김규태;김성회;박종국
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 합동 추계학술대회 논문집 정보 및 제어부문
    • /
    • pp.157-160
    • /
    • 2001
  • This paper presents A Design of WMR Controller that being composed of cooperative relation between PID controller and optimized neural network algorithm, it operate a variable control by velocity. Some proposed algorithm in the past just depended on PID controller for the control of position of WMR but for more efficient control we design a variable controller that operate control by PD controller using neural network if it is satisfied with any given condition. it adjust gain of PD controller for real time control using a fast feedforward algorithm which is different with Form of the standard backpropagation algorithm.

  • PDF

신경회로망을 이용한 이산치 혼돈 시스템의 모델 예측제어 (Model Predictive Control of Discrete-Time Chaotic Systems Using Neural Network)

  • 김세민;최윤호;박진배;주영훈
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 하계학술대회 논문집 B
    • /
    • pp.933-935
    • /
    • 1999
  • In this paper, we present model predictive control scheme based on neural network to control discrete-time chaotic systems. We use a feedforward neural network as nonlinear prediction model. The training algorithm used is an adaptive backpropagation algorithm that tunes the connection weights. And control signal is obtained by using gradient descent (GD), some kind of LMS method. We identify that the system identification results through model prediction control have a great effect on control performance. Finally, simulation results show that the proposed control algorithm performs much better than the conventional controller.

  • PDF

Design of PD controller for WMR using a Neural Network

  • Kim, Kyu-Tae;Kim, Sung-Hee;Park, Chong-Kug;Bae, Jun-Kyung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.180.5-180
    • /
    • 2001
  • This paper presents A Design of WMR Controller that being composed of cooperative relation between PID controller and optimized neural network algorithm, it operate a variable control by velocity. Some proposed algorithm in the past just depended on PID controller for the control of position of WMR but for more efficient control we design a variable controller that operate control by PD controller using neural network if it is satisfied with any given condition. it adjust gain of PD controller for real time control using a fast feedforward algorithm which is different with Form of the standard backpropagation algorithm.

  • PDF

유전 알고리듬과 반응표면을 이용한 천음속 익형의 최적설계 (Optimization of Transonic Airfoil Using GA Based on Neural Network and Multiple Regression Model)

  • 김윤식;김종헌;이종수
    • 대한기계학회논문집A
    • /
    • 제26권12호
    • /
    • pp.2556-2564
    • /
    • 2002
  • The design of airfoil had practiced by repeat tests in its first stage, though an airfoil has as been designed based on simulations according to techniques of computational fluid dynamics. Here, using of traditional optimization is unsuitable because a state of flux is hypersensitive to the shape of airfoil. Therefore the paper optimized the shape of airfoil in transonic region using a genetic algorithm (GA). Response surfaces are based on back propagation neural network (BPN) and regression model. Training data of BPN and regression model were obtained by computational fluid dynamic analysis using CFD-ACE, and each analysis has been designed by design of experiments.

Back propagation 신경망이론을 이용한 4 족 보행로봇의 가상 센서 기술 제안 (Proposal of Virtual Sensor Technique for Quadruped Robot using Backpropagation Neural Network)

  • 김완수;유승남;한창수
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.894-899
    • /
    • 2008
  • Measured sensor datum from a quadruped robotics is commonly used for recognizing physical environment information which controls the posture of robotics. We can advance the ambulation with this sensed information and need to synthesize various sensors for obtaining accurate data, but most of these sensors are expensive and require excessive load for the operation. Those defects can be serious problem when it comes to the prototype's practicality and mass production, and maintenance of the system. This paper suggests virtual sensor technology for avoiding previous defects and presents ways to apply a theory to a walking robotics through virtual sensor information which is trained with several kinds of actual sensor information from the prototype system; the general algorithm is initially based on the neural network theory of back propagation. In specific, we verified a possibility of replacing the virtual sensor with the actual one through a reaction force measurement experiment.

  • PDF

신경회로망을 이용한 PID 제어기 자동동조 (Auto-tuning of PID Controller using Neural Network)

  • 오훈;최석호;윤양웅
    • 조명전기설비학회논문지
    • /
    • 제12권3호
    • /
    • pp.7-13
    • /
    • 1998
  • 본 논문에서는 시스템의 동특성이 변화 가능한 구간에서 임의의 생플올 추출하여 신경회로망을 학습시킴으로써 시스템 동특성에 따라 Pill 제어기가 자동동조하는 방법을 제시하였다. 신경회로망을 학습시키기 위해 역전파 학습 알고리즘올 사용하였고, 교사치로는 규칙기반에 의해서 얻어진 매개변수를 이용하였다. 부하 변화시 시스템의 동특성에 맞는 Pill 제어기가 자동동조됨을 시뮬레이션에 의해 확인하였다.

  • PDF

데이터 마이닝 기법의 기업도산예측 실증분석 (A Study of Data Mining Techniques in Bankruptcy Prediction)

  • Lee, Kidong
    • 한국경영과학회지
    • /
    • 제28권2호
    • /
    • pp.105-127
    • /
    • 2003
  • In this paper, four different data mining techniques, two neural networks and two statistical modeling techniques, are compared in terms of prediction accuracy in the context of bankruptcy prediction. In business setting, how to accurately detect the condition of a firm has been an important event in the literature. In neural networks, Backpropagation (BP) network and the Kohonen self-organizing feature map, are selected and compared each other while in statistical modeling techniques, discriminant analysis and logistic regression are also performed to provide performance benchmarks for the neural network experiment. The findings suggest that the BP network is a better choice among the data mining tools compared. This paper also identified some distinctive characteristics of Kohonen self-organizing feature map.

신경망을 이용한 무인운반차의 다요소배송규칙 (A Multi-attribute Dispatching Rule Using A Neural Network for An Automated Guided Vehicle)

  • 정병호
    • 한국시뮬레이션학회논문지
    • /
    • 제9권3호
    • /
    • pp.77-89
    • /
    • 2000
  • This paper suggests a multi-attribute dispatching rule for an automated guided vehicle(AGV). The attributes to be considered are the number of queues in outgoing buffers of workstations, distance between an idle AGV and a workstation with a job waiting for the service of vehicle, and the number of queues in input buffers of the destination workstation of a job. The suggested rule is based on the simple additive weighting method using a normalized score for each attribute. A neural network approach is applied to obtain an appropriate weight vector of attributes based on the current status of the manufacturing system. Backpropagation algorithm is used to train the neural network model. The proposed dispatching rules and some single attribute rules are compared and analyzed by simulation technique. A number of simulation runs are executed under different experimental conditions to compare the several performance measures of the suggested rules and some existing single attribute dispatching rules each other.

  • PDF

CDMA System에서 협대역 간섭제거 적응 상관기에 관한 연구 (A Study On Adaptive Correlator Receiver with Narrow-band Interferance in CDMA System)

  • 정찬주;양화섭;김용식;오승재;김재갑
    • 경영과정보연구
    • /
    • 제3권
    • /
    • pp.201-214
    • /
    • 1999
  • Adaptive correlator receiver with neural network based on complex multilayer perceptron is persented for suppressing interference of narrow-band of direct spread spectrum communication systems. Recursive least square algorithm with backpropagation error is used for fast convergence and better performance in adaptive correlator scheme. According to signal noise and transmission power, computer simulation results show that bit error ratio of adaptive correlator using neural network improved that of adative transversal filter of direct sequence spread spectrum considering of jamming and narrow-band interference. Bit error ratio of adaptive correlator with neural network is reduced about 10-1 than that of adaptive transversal filter where interference versus signal ratio is 5dB.

  • PDF