• Title/Summary/Keyword: Backpropagation Neural Network

Search Result 449, Processing Time 0.025 seconds

Development and application of artificial neural network for landslide susceptibility mapping and its verfication at Janghung, Korea

  • Yu, Young-Tae;Lee, Moung-Jin;Won, Joong-Sun
    • Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
    • /
    • 2003.04a
    • /
    • pp.77-82
    • /
    • 2003
  • The purpose of this study is to develop landslide susceptibility analysis techniques using artificial neural network and to apply the developed techniques to the study area of janghung in Korea. Landslide locations were identified in the study area from interpretation of satellite image and field survey data, and a spatial database of the topography, soil, forest and land use were consturced. The 13 landslide-related factors were extracted from the spatial database. Using those factors, landslide susceptibility was analyzed by artificial neural network methods, and the susceptibility map was made with a e15 program. For this, the weights of each factor were determinated in 5 cases by the backpropagation method, which is a type of artificial neural network method. Then the landslide susceptibility indexes were calculated using the weights and the susceptibility maps were made with a GIS to the 5 cases. A GIS was used to efficiently analyze the vast amount of data, and an artificial neural network was turned out be an effective tool to analyze the landslide susceptibility.

  • PDF

Adaptively Trained Artificial Neural Network Identification of Left Ventricular Assist Device (적응 학습방식의 신경망을 이용한 좌심실보조장치의 모델링)

  • Kim, Sang-Hyun;Kim, Hun-Mo;Ryu, Jung-Woo
    • Journal of Biomedical Engineering Research
    • /
    • v.17 no.3
    • /
    • pp.387-394
    • /
    • 1996
  • This paper presents a Neural Network Identification(NNI) method for modeling of highly complicated nonlinear and time varing human system with a pneumatically driven mock circulatory system of Left Ventricular Assist Device(LVAD). This system consists of electronic circuits and pneumatic driving circuits. The initiation of systole and the pumping duration can be determined by the computer program. The line pressure from a pressure transducer inserted in the pneumatic line was recorded System modeling is completed using the adaptively trained backpropagation learning algorithms with input variables, heart rate(HR), systole-diastole rate(SDR), which can vary state of system. Output parameters are preload, afterload which indicate the systemic dynamic characteristics. Consequently, the neural network shows good approximation of nonlinearity, and characteristics of left Ventricular Assist Device. Our results show that the neural network leads to a significant improvement in the modeling of highly nonlinear Left Ventricular Assist Device.

  • PDF

Predicting the rock fragmentation in surface mines using optimized radial basis function and cascaded forward neural network models

  • Xiaohua Ding;Moein Bahadori;Mahdi Hasanipanah;Rini Asnida Abdullah
    • Geomechanics and Engineering
    • /
    • v.33 no.6
    • /
    • pp.567-581
    • /
    • 2023
  • The prediction and achievement of a proper rock fragmentation size is the main challenge of blasting operations in surface mines. This is because an optimum size distribution can optimize the overall mine/plant economics. To this end, this study attempts to develop four improved artificial intelligence models to predict rock fragmentation through cascaded forward neural network (CFNN) and radial basis function neural network (RBFNN) models. In this regards, the CFNN was trained by the Levenberg-Marquardt algorithm (LMA) and Conjugate gradient backpropagation (CGP). Further, the RBFNN was optimized by the Dragonfly Algorithm (DA) and teaching-learning-based optimization (TLBO). For developing the models, the database required was collected from the Midouk copper mine, Iran. After modeling, the statistical functions were computed to check the accuracy of the models, and the root mean square errors (RMSEs) of CFNN-LMA, CFNN-CGP, RBFNN-DA, and RBFNN-TLBO were obtained as 1.0656, 1.9698, 2.2235, and 1.6216, respectively. Accordingly, CFNN-LMA, with the lowest RMSE, was determined as the model with the best prediction results among the four examined in this study.

A Coevolution of Artificial-Organism Using Classification Rule And Enhanced Backpropagation Neural Network (분류규칙과 강화 역전파 신경망을 이용한 이종 인공유기체의 공진화)

  • Cho Nam-Deok;Kim Ki-Tae
    • The KIPS Transactions:PartB
    • /
    • v.12B no.3 s.99
    • /
    • pp.349-356
    • /
    • 2005
  • Artificial Organism-used application areas are expanding at a break-neck speed with a view to getting things done in a dynamic and Informal environment. A use of general programming or traditional hi methods as the representation of Artificial Organism behavior knowledge in these areas can cause problems related to frequent modifications and bad response in an unpredictable situation. Strategies aimed at solving these problems in a machine-learning fashion includes Genetic Programming and Evolving Neural Networks. But the learning method of Artificial-Organism is not good yet, and can't represent life in the environment. With this in mind, this research is designed to come up with a new behavior evolution model. The model represents behavior knowledge with Classification Rules and Enhanced Backpropation Neural Networks and discriminate the denomination. To evaluate the model, the researcher applied it to problems with the competition of Artificial-Organism in the Simulator and compared with other system. The survey shows that the model prevails in terms of the speed and Qualify of learning. The model is characterized by the simultaneous learning of classification rules and neural networks represented on chromosomes with the help of Genetic Algorithm and the consolidation of learning ability caused by the hybrid processing of the classification rules and Enhanced Backpropagation Neural Network.

Auto-Tuning Method of Learning Rate for Performance Improvement of Backpropagation Algorithm (역전파 알고리즘의 성능개선을 위한 학습율 자동 조정 방식)

  • Kim, Joo-Woong;Jung, Kyung-Kwon;Eom, Ki-Hwan
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.39 no.4
    • /
    • pp.19-27
    • /
    • 2002
  • We proposed an auto-tuning method of learning rate for performance improvement of backpropagation algorithm. Proposed method is used a fuzzy logic system for automatic tuning of learning rate. Instead of choosing a fixed learning rate, the fuzzy logic system is used to dynamically adjust learning rate. The inputs of fuzzy logic system are ${\Delta}$ and $\bar{{\Delta}}$, and the output is the learning rate. In order to verify the effectiveness of the proposed method, we performed simulations on a N-parity problem, function approximation, and Arabic numerals classification. The results show that the proposed method has considerably improved the performance compared to the backpropagation, the backpropagation with momentum, and the Jacobs' delta-bar-delta.

Alleviation of Vanishing Gradient Problem Using Parametric Activation Functions (파라메트릭 활성함수를 이용한 기울기 소실 문제의 완화)

  • Ko, Young Min;Ko, Sun Woo
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.10 no.10
    • /
    • pp.407-420
    • /
    • 2021
  • Deep neural networks are widely used to solve various problems. However, the deep neural network with a deep hidden layer frequently has a vanishing gradient or exploding gradient problem, which is a major obstacle to learning the deep neural network. In this paper, we propose a parametric activation function to alleviate the vanishing gradient problem that can be caused by nonlinear activation function. The proposed parametric activation function can be obtained by applying a parameter that can convert the scale and location of the activation function according to the characteristics of the input data, and the loss function can be minimized without limiting the derivative of the activation function through the backpropagation process. Through the XOR problem with 10 hidden layers and the MNIST classification problem with 8 hidden layers, the performance of the original nonlinear and parametric activation functions was compared, and it was confirmed that the proposed parametric activation function has superior performance in alleviating the vanishing gradient.

Neural Network and Its Application to Rainfall-Runoff Forecasting

  • Kang, Kwan-Won;Park, Chan-Young;Kim, Ju-Hwan
    • Korean Journal of Hydrosciences
    • /
    • v.4
    • /
    • pp.1-9
    • /
    • 1993
  • It is a major objective for the management and operation of water resources system to forecast streamflows. The applicability of artificial neural network model to hydrologic system is analyzed and the performance is compared by statistical method with observed. Multi-layered perception was used to model rainfall-runoff process at Pyung Chang River Basin in Korea. The neural network model has the function of learning the process which can be trained with the error backpropagation (EBP) algorithm in two phases; (1) learning phase permits to find the best parameters(weight matrix) between input and output. (2) adaptive phase use the EBP algorithm in order to learn from the provided data. The generalization results have been obtained on forecasting the daily and hourly streamflows by assuming them with the structure of ARMA model. The results show validities in applying to hydrologic forecasting system.

  • PDF

Computation of Noncentral T Probabilities using Neural Network Theory (신경망이론에 의한 비중심T분포 확률계산)

  • Gu, Son-Hee
    • The Transactions of the Korea Information Processing Society
    • /
    • v.4 no.1
    • /
    • pp.177-183
    • /
    • 1997
  • The cumulative function of the noncentral t distribution calculate power in testing equality of means of two normal populations and confidence intervals for the ratio of population mean to standard deviation. In this paper, the evaluation of the cumulative function of noncentral t distribution is applied to the neural network consists of the multi-layer perception structure and learning process has the algorithm of the backpropagation. Numerical comparisons are made between the Fisher's values and the results obtained by neural network theory.

  • PDF

Predicting Exchange Rates with Modified Elman Network (수정된 엘만신경망을 이용한 외환 예측)

  • Beum-Jo Park
    • Journal of Intelligence and Information Systems
    • /
    • v.3 no.1
    • /
    • pp.47-68
    • /
    • 1997
  • This paper discusses a method of modified Elman network(1990) for nonlinear predictions and its a, pp.ication to forecasting daily exchange rate returns. The method consists of two stages that take advantages of both time domain filter and modified feedback networks. The first stage straightforwardly employs the filtering technique to remove extreme noise. In the second stage neural networks are designed to take the feedback from both hidden-layer units and the deviation of outputs from target values during learning. This combined feedback can be exploited to transfer unconsidered information on errors into the network system and, consequently, would improve predictions. The method a, pp.ars to dominate linear ARMA models and standard dynamic neural networks in one-step-ahead forecasting exchange rate returns.

  • PDF

An apt material model for drying shrinkage and specific creep of HPC using artificial neural network

  • Gedam, Banti A.;Bhandari, N.M.;Upadhyay, Akhil
    • Structural Engineering and Mechanics
    • /
    • v.52 no.1
    • /
    • pp.97-113
    • /
    • 2014
  • In the present work appropriate concrete material models have been proposed to predict drying shrinkage and specific creep of High-performance concrete (HPC) using Artificial Neural Network (ANN). The ANN models are trained, tested and validated using 106 different experimental measured set of data collected from different literatures. The developed models consist of 12 input parameters which include quantities of ingredients namely ordinary Portland cement, fly ash, silica fume, ground granulated blast-furnace slag, water, and other aggregate to cement ratio, volume to surface area ratio, compressive strength at age of loading, relative humidity, age of drying commencement and age of concrete. The Feed-forward backpropagation networks with Levenberg-Marquardt training function are chosen for proposed ANN models and same implemented on MATLAB platform. The results shows that the proposed ANN models are more rational as well as computationally more efficient to predict time-dependent properties of drying shrinkage and specific creep of HPC with high level accuracy.