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ABSTRACT

This paper discusses a method of modified Elman network(1990) for nonlinear predictions and
its application to forecasting daily exchange rate returns. The method consists of two stages that
take advantages of both time domain filter and modified feedback networks. The first stage
straightforwardly employs the filtering technique to remove extreme noise. In the second stage
neural networks are designed to take the feedback from both hidden-layer units and the deviation
of outputs from target values during learning. This combined feedback can be exploited to transfer
unconsidered information on errors into the network system and, consequently, would improve pre-
dictions. The method appears to dominate linear ARMA models and standard dynamic neural net-

works in one-step-ahead forecasting exchange rate returns.
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I. INTRODUCTION

Exchange rate predictions have been the subject of one of the most active bodies of literature
In economics since the inception of floating exchange rate system in the early 1970s. The predic-
tion models have usually been constructed under assumption of linearity. In practice, however,
their results of predicting the short-term movements of exchange rates have been unsatisfactory
although they are straightforward to practice and they are supported by a theorem of Wold
(1938) that any stationary process can be represented as a linear system generating uncorrelated
impulses.

Krugman (1988) showed that the failure of forecasting short-term exchange rates with the
standard models might be largely due to nonlinearity in time patterns of exchange rates. This in-
dication has received extensive support from both theoretical studies such as a speculative bubble
model (Blanchard and Watson, 1982), target zone theory (Krugman, 1988), etc. and empirical
studies (Diebold, 1988; Baillie and Bollerslev, 1989; Hsieh, 1988, 1989; Diebold and Nason, 1990;
Chinn, 1991; Meese and Rose, 1991; Park, 1997 etc.). Thus, nonlinear methods make it possible
to predict short-term movements of exchange rates, giving significant improvements over the
usual linear methods.

The one of the most appealing nonlinear methods is artificial neural network (ANN) presented
by Rummelhart and McCelland (1986). Since artificial neural networks were originally designed
for reproducing some flexibility and power of the human brain by artificial means, they have
been widely used for a nonlinear method in many fields and their numerous empirical applications
have been satisfactory. In recent days, there has also been rapidly increased concern about apply-
ing them to economics and finance after the first effort to use them in predicting IBM stock pric-
es by White (1988).

Their application to exchange rates stems from Kuan and Liu (1992), who investigate the out-
of-sample forecasting ability of feedforward and recurrent networks on five daily exchange rates
against the U.S. dollar, including the British pound, the Canadian dollar, the Deutsche mark, the
Japanese yen and the Swiss franc. The empirical results show that the neural networks perform
reasonably well in terms of sign forecasts. However, as far as out-of-sample MSE being con-
cerned, the results are consistent with the conclusion of Diebold and Nason (1990) that
nonlinearities of exchange rates, if any, may not be exploited to improve point forecast. The
results in Tsibouris (1993) also support the evidence that the neural networks are useful in fore-

casting the sign of the exchange rate changes, but not the magnitude. Weigend et al. (1992)
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present results from forecasting sunspots and exchange rates using a form of neural net algo-
rithms that avoids overfitting to data by the method of weight-elimination. They show that the
result of sign prediction is better than chance (i.e., random walks). Zhang and Hutchinson (1993)
apply multilayer perceptrons to forecast exchange rates with data, which are tick-by-tick Swiss
franc to U.S. dollar exchange rates. On average for l-minute, 15-minute, and 60-minute predic-
tions, the predictions of the networks have about 5% improvement in Root-Mean-Squared errors
over the random walk model, although the error distribution is quite different in two cases.

Other studies of forecasting exchange rates using ANN are Abu-Mostafa (1995), who reports
a statistically significant improvement in performance in four major foreign exchange markets by
an ANN with a simple symmetry hint, and Hsu et al. (1995) who use an ANN to select predic
tive indicators and show that the forecasting accuracy of direction is better than that from the
unprocessed universe of indicators.

The reasons for wide application of the ANN to prediction of exchange rates are obvious.
Artificial neural networks are data-driven modeling approaches and let the data decide the struc
ture and parameters of a model without any restrictive parametric modeling assumptions. There-
fore, they seem fully suited to fit a wide variety of nonlinear functions. More practical reason is
that, in contrast to other nonlinear methods such as polynomial expansion, the speed complexity
of artificial neural networks may be given as a linear form because the number of parameters
goes up almost linearly with respect to the number of mputs (Barron, 1991).

Despite their adaptability to various nonlinearities, like other nonhnear methods they may have
unavoidable limitation in predicting exchange rates. The idea of this paper is that models for only
nonlinearity in exchange rates may not significantly improve predictions. Thus, this paper propos-
es a certain enhancement to go with a method of modified Elman network (1990) (MMEN) for
overcoming the limitation of prediction models. That 1s, this method (MMEN) has a two-stage
procedure that takes advantages of both time domain filter and modified recurrent networks.
Since high noise in time series may have an undesirable effect on the learning process of neural
networks, it may give rise to a poor capacity to generalize in respect of out-of-sample. The first
stage straightforwardly employs the filtering technique to remove the high noise. The time domain
filtering, then, can produce better inputs to neural networks. On the other hand, simple time de-
layed inputs in prediction models may not enough to explain a variety of fluctuating patterns of
exchange rate returns, which introduce a complex and highly dynamic behavior, because the in-
puts cannot take into account all economic and non-economic factors greatly influencing ex-
change rate returns.

The key point of this paper is that it is at least that undetected regularities caused by the
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omitted factors exist in errors and the modification of feedback neural networks can extract the
regularities from the errors in the models during learning. That is, in the second stage the recur-
rent networks are designed to take the feedback from not only hidden-layer units but also the
deviation of ouiputs from target values during learning. This combined feedback can be exploited
to transfer the information in errors into the network system and to considerably improve conver-
gence In terms of both accuracy and speed. "

Empirical studies are conducted by using changes of exchange rates of the Korea won relative
to the US dollar (UD), the Japanese yen (JY), the Deutsche mark (DM), and the British pound
(BP). It is well known that different exchange rates follow different behaviors so that the statis-
tical features of the exchange rate data used here should be analyzed carefully. In order to diag-
nose the possibility of prediction, the dependence tests of the exchange rate returns are particular-
ly carried out by Ljung-Box Q, Tsay (1986), and Brock-Dechert-Scheinkman (BDS, 1987) tests.
For the UD and the JY there is strong evidence of linear and nonlinear dependence but for the
DM and the BP not any dependence. This implies that predictions of the UD and the JY can be
improved by nonlinear time series models but the DM and the BP cannot be predicted well by
any simple time series model because they seem follow random walk processes. As expected, in
one-step-ahead predictions of all the exchange rate returns, the MMEN appears to dominate lin-
ear ARMA models and dynamic neural networks such as time delay neural networks (TDNN).

The structure of this paper is as follows. In the second section, standard dynamic neural net-
works are introduced. The third section is devoted to propose the approach for predictions of ex-
change rates. In fourth section empirical studies are carried out and the results are reported. Fi-

nally, the fifth section draws some conclusions.

II. ARCHITECTURE OF TIME DELAY NEURAL NETWORKS

This section introduces dynamic neural networks briefly because most of the economists are still

)

not familiar with artificial neural networks. ? Neural networks can approximate a wide variety of

1) It 1s widely recognized that for highly dynamic series such as exchange rate series neural networks
generally suffer from extremely slow learning by using algorithms based on gradient descent networks.
2) For further details see Kuan and White (1994).
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nonlinear functions arbitrarily well, proved that their architectures include sufficiently large hidden
units (Hornik, Stinchcombe, and White, 1989; Funahashi, 1989). Thus, neural networks have been
receiving growing atlention for modeling or forecasting nonlinear system in many fields.

For time series predictions, the most popularly used neural networks are clearly time delay
neural networks (TDNN; Weigend, Huberman, and Rumelhart, 1990) and recurrent neural net-
works (RNN; Elman, 1990). The time delay neural networks can be analyzed by using standard
statistical methods and more the results of such analysis can be applied for time series predic-
tions directly, but they may not be sufficient to characterize the patterns of highly dynamic time
series. On the other hand, the recurrent neural networks are suited for applications that refer to
the patterns of genuinely time dependent inputs such as time series predictions due to their dy-
namic feature. That is, the recurrent neural networks, in which the input patterns pass through
the network more than once before generating a new output pattern, can learn extremely com-
plex patterns. Several experts on neural networks have confirmed the superiority of the recurrent
neural networks over feedforward networks when performing nonlinear time series forecast (for
example, Connor and Atlas, 1991) *.

This section needs to tensely describe the time delay neural networks because they have more
basic architecture than the recurrent neural networks and Kuan and Liu (1992) illustrate that
the time delay neural networks are performed well in predicting sign of exchange rate returns.
Architecture of time delay neural networks with single hidden layer is shown in figure 1*.

+ The nitial p inpuls are given a time delay vector,
x = [x/x/ [ 71 //’IJ

» The inputs are connected to 1, hidden units (N,)) via a nonlinear activation function that is
generally a monotonic nondecreasing function such as hard limiter function, threshold logic
function, or sigmoid function. The goal of nonlinearity is to enhance the features of inputs.

+ The hidden units are also connected to a target via a linear function and an output is pro-
duced as the weighted sum of the activations of the hidden units.

» Adjustable biases can be used between the inputs and the output.

3

~

While In the dynamic context the recurrent neural networks can outperform the time delay neural net-
works, they occasionally are difficult to be trained optimally by a standard backpropagation algorithm
due n part to the dependence of their network parameters (Kuan and Hornik, 1991).

4

~—

[t turned out that single hidden laver may be enough to analyze time series (Hornik, Stinchcombe, and
White, 1989).
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Figure 1. Architecture of TDNN

Architecture of the time delay neural networks can be mathematically rewritten as

p
N, = h(z W.x ), t=1,--- T

i=1

L
O/ — g(gl B,»]V,/),

where N, 1s the vector of hidden units, x i1s the vector of inputs, (Adjustable biases, x, and N,

can be added as a vector of constant ones), W.., 8, are parameters called weights, and h, g are

known activation functions.

As indicated earlier, the time delay neural networks may have limitations of accurately recog-

nizing the patterns of highly dynamic time series. To improve the recognition of the pattierns, we

can consider recurrent neural networks that take results of processing at a particular time step

and feed data back into the network inputs at the next time step. Since the output of the recur-

rent neural networks 1s a function of current input and its entire history, in the dynamic context

the recurrent neural networks can outperform the time delay networks. Mathematically, the archi-

tecture of the recurrent neural networks appears as

p q
N, = h( 2 VV x, + 2 U/.’Nw— 1), =1, T
{=1

i=1

L
0 = (T BN,

The time delay neural networks are nonlinear expansions of least squares algorithm so that
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they can statistically approximate a desirable function through error-backpropagation learning al-
gorithm that is used most commonly. This algorithm is a steepest descent algorithm, which mini-

mizes the total quadratic error,

2 (y—0)

f=

0o —

T
2, (y—8&(ND)*

t=

B =

To get the steepest descent direction of the total quadratic error, we need to calculate the gra-

dient of £ with respect to B,, which is realized using the chain rule.

oE 3z oN,
08~ T OIN ap)

When JgoN, = g .oN,08,=1, and (y,—0)g = 8% £, 1s updated using the following equation,
Blk+1)=p(k)+76"]

where 7 is the learning rate.
By a similar way, we can calculate the gradient of E with respect to W,.

oF , ,
aVV = 7hx'/(y(7fol)g B;,

where h' = oh/oW,. When h'x (v~ 0)g B, = 6" W, is also updated using the following equation,

Wi k~=1)=W (k) +7d"x,

THE METHOD OF MODIFIED ELMAN NETWORK

In practice, even dynamic neural networks with reasonable complexity fail to learn exchange
rate returns satisfactorily, and therefore their prediction ability 1s not sufficiently powerful. Possi-
ble reasons for this may be that exchange rate returns include extreme noise, and more seriously,
most of them may not be strongly correlated over short time period. The main idea of this paper
is that simple time delayed inputs are not enough to explain the complex dynamics of exchange

rate returns, and intuitively we need additional inputs which can be unmeasurable but important
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factors for recognizing the complex dynamics.”

How can we consider the unmeasurable factors as inputs? Although this seems to be a dilem-
ma, we can deal with it by modifying the standard recurrent neural networks introduced by
Elman in 1988. At one particular epoch k& feedback from the hidden layer units becomes
additional input units to the networks at the next epoch k41 and so does the deviation of output
from the target value. With the combined feedback, it is clearly possible to regard the deviation
(i.e., error) from the previous epoch as an input and to allow the network system to keep unat-
tainable information on the error. That is, at the outset of training, the error being fed back to
an input may significantly influence the network output but other additional inputs from the hid-
den layer may not. As training with backpropagation algorithm 1s going on, the fit improves and
the error sufficiently decreases. Then the error little affects the network output because informa-
tion on the error is likely to be transferred into other additional inputs. This means that the net-
works can extract unmeasurable but relevant information from the error. Therefore, it is expected
that the networks predict the future movements In time series well based upon accurate pattern

recognition from the past.

@ OUTPLT

WEIGHTS

HIDDEN UNITS

EXTERNAL INPUTS

[vit=D--vlt-nb=1D] - [y(t=p)--v{t—p—nb)] | TIME DOMAIN FILTERING

Figure 2. Architecture of MMEN

5) Economic variables can be considered as additional and measurable inputs but they alone may hardly
play a role in predicting the complex dynamics hecause, since the heginning of 1970s, economic models
have little explained the exchange rate returns but as a very long run theory.
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For network computing 1 propose a two-stage procedure shown in figure 2. It takes advantages
of both time domain filtering and the networks on the basic idea that networks do not have to
be constructed by one complicated architecture. First, since the neural networks proposed here
can lead to an arbitrarily accurate fit on data with undesirable noise and thus this overfitling
may have an unwanted effect upon out-of-sample generalization, the time domain filter is carried
out to enhance inputs by removing noise.

This filter structure is the general tapped delayline filter described by the equation,

ne na
Y, = _21 b,ﬂyr i+ zla,;ﬂyz— "
i= =
where y, i1s the original series, Y, is the filtered series, and b, a, are the filter coefficients that can
be obtained from a filter design such as a digital Butterworth filter (Parks and Burrus, 1987).
Next, to understand underlying patterns from the dynamic series, we consider a nonlinear ARMA

(p, q)model with the neural networks:
Y, = f(yl w Yo Y, pr €1y € ony € q)+ e,

where f is the neural networks. In cases where a high order is required in AR process, a ratio
of low-order AR and MA processes frequently leads to parsimonious representations. Thus, the
model compares favorably with the simple time delay neural networks: y=f(x,, x, |, =", x_ o) + o0

The neural networks with single hidden layer in~figure 2 transform their inputs into an output

by the equation below,

pra L
1= h(E WE'x, 4 2wl INL+ 6l ),
J=1

(=1
L
O§+|:g(2 ‘BIA‘*INA*I)’
1=1
{= 1, Ly t=1, -, T
where x, is a p+q vector of input variables (Bias inputs are not considered here) and superscript
k denotes the index of epoch. More compactly, the above equations can be rewritten as

L pra L
0F' = gl 2 BIR(Z Wiz, + B i N + 6 'ef )]
=1 J=1

t=1

= f(x, &)

where £ 1s the vector of all parameters, £ = (5, W, v, §).

The inputs x, "at & epoch activate each hidden unit in the hidden layer through the tan-sigmoid
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function h and the hidden-unit activations N* feed back to the input layer at k+1 epoch. Then,
they serve to keep unmeasurable information from the error that is the deviation of network out-
put O' from the target value Y’ As network experience accumulates, the error fades out and it
can be treated as zero. Consequently, the network output is jointly determined by x’ and N'. This
means that we can directly apply the networks to predict future changes of time series because
x" are inputs and N’ are created from the networks.

Feedback variables are created from the networks and so they depend upon the network pa-
rameters S and W. Sometimes, the dependence of feedback variables can make the standard
backpropagation algorithm infeasible because the derivatives of f with respect to the network pa-
rameters are able to be calculated incorrectly and the algorithm can take an appropriate gradient
search direction (Rumelhart, Hinton, and Williams, 1986). Feeding error back into input, however,
make it possible to overcome the problem by considerable improvement of convergence, and the
recurrent neural networks, which feed error back into input, can be trained to respond to outputs
by the standard backpropagation algorithm because if the standard backpropagation algorithm
takes a wrong gradient search direction, feeding error back into input makes it to take a new

search direction compensating for the wrong search direction at the next step.

V. PREDICTING EXCHANGE RATES

The data used here® are based upon daily prices of the Korea won relative to four major cur
rencies. the US dollar (UD), the Japanese yen (JY), the Deutsche mark (DM), and the British
pound (BP). The data contain a total of 1,138 observations from March 2 1990 to December 29
1993%. It has been well known that foreign exchange rates are usually nonstationary. For avoid-
ing problems arising from the nonstationarity 1 took the natural logarithmic differences between
two successive trading days. Let s, be exchange rate at time t and the log differences of ex-

change rates are defined as y, = log(s,/ s,-,)-100.

6) In Korea fixed rate system was changed into managed floating in 1980 and exchange rates have been
able to be more freely determined in the foreign exchange markets since March 2 1990.



Won/Dollar

0 500 1000

Won/Mark

0 500 1000

Won/Yen

0 500 1000

Won,/Pound

-10

0 500 1000

Figure 3. Data Plots | y, = log(s,/ s,.,)-100

Each time series is graphed in figure 3. These data plots show that the exchange rate returns

are slationary but highly dynamic. Further, they seem to include extreme noise. The UD and the

JY tend to be clustered together over time and this tendency may exhibit time series dependence

such as ARCH process (Engle, 1982). Table 1 also reports some statistical properties of the data.

The means and the medians are very small but the ranges of daily changes except the UD are

relatively high. The range for the JY 1is, especially, between -14.2455 and 13.8666. It would ap-

pear that all the daily returns are not normally distributed according to the estimates of skew-

ness and kurtosis. The high values of the kurtosis estimates also suggest a possibility that the

data are not independent and identically distributed over time (Hsieh, 1988). The somewhat ex-
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pected results imply that it may be quite difficult to analyze basic behaviors of the exchange rate

returns and to predict their future changes.

Table 1. Summery Statistics of Changes of Log Exchange Rates

UD JY DM BP
Mean 0.0134 0.0398 0.0146 0.0048
Median 0.0000 0.0127 0.0144 0.0159
Variance 0.0090 1.0514 0.5826 0.6029
Skewness 0.2014 -0.2749 -0.6897 -0.7195
Kurtosis 3.6633 99.7181 7.7141 7.1897
Maximum 0.5421 13.8666 2.7746 3.2839
Minimum -0.5140 -14.2455 -7.1246 -6.3775

In order to examine the presence of any linear or nonlinear dependence several test methods
are carried out. At first, to detect any linear dependence standard errors of the autocorrelation

coefficients, 0., are computed and the Ljung-Box Q statistics for M lags are also computed as
M 1 -
QUM) = T(T+2) X} -=—.p*.
J=1 T“]

Under the null hypothesis of non autocorrelation, Q 1s asymptotically a chi-square distribution
with M degrees of freedom. According to the autocorrelation coefficients and their standard er-
rors shown in table 1, the first coefficient for the UD and the JY Is statistically different from
zero at the 5% significance level but for the MD and the BP no coefficient may be statstically
different from zero. The joint test that the first M autocorrelation coefficients are zero is carried
out for M=50 and M=100. At the 5% significance level, the null hypothesis is rejected for the
UD and the JY but not rejected for the MD and the BP. Consequently, it appears that the UD
and the JY are linearly correlated but the MD and the BP are not.

According to a number of previous studies, it is possible for the exchange rate returns to have
linear and nonlinear dependence simultaneously. Thus, even if evidence of linear dependence is
not detected, the exchange rates can have nonlinear dependence alone, so we need to investigate
carefully whether they exhibit nonlinear dependence. The fundamental techniques are adopted to
compute standard errors of the autocorrelation coefficients and the l.jung-Box Q statistics of the
squared data because the presence of nonlinear dependence can imply the correlation of the
squared data in part. Table 2 indicates that for the all exchange rates except the DM the

autocorrelation coefficients and the Ljung-Box Q statistics of the squared data are remarkably
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larger than those of the original data and thus, with the exception of the DM, all the returns

may have nonlinear dependence.

Table 2. Autocorrelation Coefficients and the Ljung-Box Q

Original Data :

Lags UD JY DM BP
0 2169*(.0296) ~.3049*(.0296) -.0212(.0296) .0117(.0296)
R -.0393(.0310) -.0153(.0322) -.0249(.0296) .0006(.0296)
04 -.0610(.0310) -.0054(.0323) .0075(.0296) .0491(.0296)
04 -.0654(.0311) -.0181(.0323) -.0432(.0296) -.0286(.0297)
0 .0186(.0312) .0029(.0323) .0392(.0297) .0550(.0297)
O .0614(.0313) ~-.0010(.0323) -.0197(.0297) -.0067(.0298)
0 -.0352(.0314) -.0048(.0323) -.0396(.0298) -.0690(.0298)
O -.0586(.0314) .0098(.0323) .0368(.0298) .0196(.0299)
O -.0692(.0315) .0011(.0323) -.0235(.0298) -.0111(.0299)
O .0289(.0316) -.0039(.0323) .0209(.0299) .0590(.0300)
015 -.0245(.0320) .0246(.0323) -.0349(.0300) .0010(.0302)
020 .0051(.0322) .0127(.0324) .0073(.0302) -.0071(.0302)

Q(50) 207.15[.000] 130.91[.000] 51.01[.4334] 47.71{.5655]

Q(100) 248.48[.000] 171.16[.000] 95.94[.5961 } 103.33[.3897]

Squared Data . y?

Lags UD JY DM BP
0, 1663*(.0296) .4921*(.0296) .0287(.0296) .0491(.0296)
O .1749*(.0304) -.0069(.0361) .0339(.0296) .1065*(.0297)
0 .1959*(.0313) -.0057(.0361) .0325(.0297) .3012*(.0300)
04 .0895*(.0323) -.0053(.0361) .0496(.0297) -.0047(.0326)
05 .0680(.0326) -.0063(.0361) .0422(.0298) .0828(.0326)
O .0820*(.0327) -.0049(.0361) .0341(.0298) -.0025(.0327)
07 .1004*(.0329) -.0057(.0361) .0028(.0299) .0221(.0327)
05 0744 (.0331) -.0025(.0361) .0265(.0299) .0076(.0328)
0 .1158*(.0333) -.0007(.0361) -.0047(.0299) .0119(.0328)
O .0711(.0336) -.0050(.0361) .0050(.0299) -.0060(.0328)
O1s .1431*(.0375) -.0020(.0361) .0133(.0303) .0110(.0333)
O -.0038(.0386) -.0030(.0361) .0453(.0304) -.0013(.0334)

Q(50) 556.14[.0000] 277.241.0000] 54.78[.2978 173.33[.0000}

Q(100) 655.87[.0000] 278.83[.0000] 75.99[.9647] 221.23[.0000]

Notes: SEs of p are in parentheses and significance levels are in brackets.
* Significantly different from 0 at the 5% level.
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To find strong support for it, we can run Tsay (1986) test that includes more combinations of
cross-product terms. The first step of the test is to fit an AR(2) to » and to save the estimated
residuals, e,. The next step is linear regression of the vector (y%-., ¥-2%-1, ¥—2) on the vector(l,
Yi-1, ¥i-2), saving the estimated residuals as z,. The final step is to regress e,. on z. and to run
F, 1, at conventional significance level. As expected, the results of Tsay test also provide strong
evidence of nonlinear dependence for the UD and the JY but not for the DM and the BP.

Now, to merely pick up nonlinear dependence BDS test is applied to the residuals of AR(5) in
which linear dependence may be fully eliminated. Brock, Dechert, and Scheinkman (1987) show
that the BDS statistic has a limiting standard normal distribution under the null hypothesis of 1.
d.. In a finite sample the choice of imbedding dimension m and distance & can have an effect on
the BDS statistic. Choosing imbedding dimension too large compared with the sample size may

yield the unreliable BDS statistic because there are too few nonoverlapping observations.

Table 3. Tsay and BDS Statistics

m uD JY DM BP
2 0.8259 1.8863 -0.2127 0.2648
3 1.3206 2.4594* -0.1107 0.4046
BDS 4 1.9707* 2.6676* 0.0808 0.6997
5 2.4766* 3.0423* 0.2804 1.0151
6 3.3584* 2.9718* 0.5603 1.5205
Tsay 6.3371** 16.6657** 1.3544 0.8004

* The null hypothesis of L1d. is rejected at 5% significance level.
* The null hypothesis of linear independence is rejected at 5% significance level.

Thus, according to our data the proper choice for m is from 2 to 6. On the other hand, if ¢ is
too small or large, the BDS statistic can also be ill-behaved. Brock, Hsieh, and LeBaron (1991)
suggest the best choice of & is between 0.5 and 1.5 times the standard deviation. In this paper
the BDS statistics are calculated for € = 0.5 times the standard deviation. In the case of the JY
only four extreme observations affect the standard deviation greatly so that they are excluded for
calculation of the standard deviation. Interestingly but not surprisingly, for the DM and the BP
there 1s little evidence of serial correlation of the AR residuals but the UD and the JY exhibit
stronger serial correlation as m increases. This means the UD and the JY have nonlinear depen-
dence significantly. Now to conclude, the strong evidence of serial dependence in the UD and the

JY series allows time series models to predict the future changes of the exchange rates, but we
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can expect the apparent limitation of standard linear models due in part to the presence of con-
siderable nonlinearities. Moreover, it would be hard to predict the future changes of the DM and
the BP series, which have little serial dependence. As has been mentioned before, this
unpredictability can partially arise from randomness of the exchange rates.

One of main interest in this section Is to apply the MMEN proposed in this paper for predicting
the future changes of the exchange rates and evaluate its prediction results In comparison with
those of the ARMA and the TDNN models. For in-sample estimation 1037 observations are used
and for one-step-ahead predictions the last 100 observations are reserved. The method consists of
the two stage procedures. In the first stage, the original data are filltered by the general time do
main filter described in section 3. The filter coefficients, b, a., are created from 5Hth Butterworth
function. It is expected that this filtering operation will reduce extreme noise effectively and pro-
duce data with better quality, which can be used as inputs to the neural networks. In next step,
the filtered data are standardized to lie between -1 and 1. The neural network has single hidden
layer with 10 different hidden units (L=1, 2, ---, 10). A tansigmoid function and a linear function
are defined as activation functions, /1 and g, respectively For the network inputs, 3 different AR-
processes (p=1, 2, 3) and 3 different MA processes (g=1, 2, 3) are chosen. Hence, 90 neural
networks are applied to predictions. The initial values for parameters are random numbers follow-
ing normal distributions.

The TDNN has same design except network inputs. For the TDNN inputs are time delayed vec-
tor (%, %1, - X ). In addition, we experience 8 different ARMA(p, q) models (p=0, 1, 2, 4=0,
1, 2 except p=0 and ¢=0). To decide an appropriate ARMA model we consider Schwarz informa-
tion criterion (SIC), SIC(k)=log(s?)+ Klog(T)/T, where kis the number of parameters. For all
series ARMA(0, 1) 1s the best model based on the SIC and it is applied to one-step-ahead predic-
tions.”

To assess the quality of predictions we use a general measure, normalized mean squared error,

T (observation, — prediction,)*
NMSE = =1 (observationt,— mean)®
1 é .
T AW

where mean and 6° are average and variance of the target values. If the average of the data is

simply used as predictor, a value of NMSE=1 is obtained.

7) For the UD, JY, DM, and BP, the values of SIC of ARMA(0,1) are -4.7434, -0.0521, -0.5274, and
-0.4927, respectively.
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Table 4. One-step-ahead Prediction Results : NMSE

ub

MMEN (p, q@)
L (1,L1) (1,2) (1,3) (2,1) (2,2) (2,3) (3,1) (3,2) (3,3) TDNN
1 0.721 0.677 0.672 0.657 0.676 0.652 0.222 0.213 0.206 0.934
2 0.589 0.219 0.732 0.656 0.654 0.435 0.235 0.201 0.193 0.938
3 0.667 0.611 0.625 0.594 0.328 0.174 0.199 0.189 0.310 0.938
4 0.757 0.220 0.220 0.699 0.200 0.600 0.561 0.241 0.580 0.935
5 0.647 0.791 0.829 0.702 0.244 0.636 0.184 0.620 0.550 0.928
6 0.735 0.719 0.730 0.689 0.720 0.440 0.739 0.226 0.653 0.913
7 0.733 0.257 0.606 0.763 0.692 0.625 0.282 0.241 0.576 0.940
8 0.736 0.223 0.669 0.332 0.225 0.388 0.192 0.238 0.288 0.938
9 0.243 0.269 0.770 0.190 0.273 0.615 0.256 0.217 0.211 0.934
10 0.731 0.238 0.686 0.239 0.310 0.660 0.478 0.662 0.334 0.934
ARMA (0.1) 0.920

JY

MMEN (p, q)
L (L,1) (1,2) (1,3) (2,1 (2,2) (2,3) (3,1) (3,2) (3,3) TDNN
1 0.800 1.017 1.019 0.918 1.052 1.035 1.134 1.112 1.082 0.997
2 0.857 0.985 0.993 0.885 1.013 0.549 1.159 1.067 1.224 0.991
3 0.787 0.987 0.919 0.886 1.029 1.064 1.024 1.032 1.298 0.968
4 0.819 1.035 1.020 0.909 0.982 1.166 0.973 1.097 0.888 0.952
5 0.818 0.902 0.919 0.916 1.046 1.019 1.264 0.964 1.312 0.995
6 0.869 1.024 0.832 0.764 1.154 1.423 0.845 1.026 1.225 1.065
7 0.791 0.978 0.955 0.838 1.221 0.903 1.456 1.022 0.944 0.970
8 0.844 1.142 1.164 0.868 1.345 1.064 1.094 0.748 1.145 1.072
9 0.812 1.010 1.021 0.853 0.908 0.904 1.105 1.119 0.969 1.041
10 0.883 0.984 0.930 0.845 1.046 1.100 0.695 1.087 0.701 0.995
ARMA (0.1) 0.984

DM

MMEN (p, q)
L (1,1) (1,2) (1,3) (2,1) (2,2 (2,3) (3,1) (3,2) (3,3) TDNN
1 0.740 0.974 0.976 0.902 0.992 0.997 1.015 1.015 1.006 0.980
2 0.678 0.977 0.975 0.870 1.002 0.936 0.863 1.033 1.059 0.976
3 0.731 0.998 0.969 0.740 1.019 1.050 0.783 0.973 0.920 0.982
4 0.703 0.914 0.959 0.735 1.016 0.896 0.862 1.164 0.970 0.976
5 0.663 0.956 1.028 0.803 0.859 0.865 0.708 0.625 0.937 0.979
6 0.746 1.037 0.766 0.781 0.969 1.168 0.888 1.170 1.017 0.977
7 0.677 1.048 0.964 0.874 0.974 1.047 0.835 0.968 0.940 0.978
8 0.573 0.897 1.015 0.855 0.641 0.857 0.910 1.274 0.878 0.976
9 0.582 0.998 0.821 0.815 1.336 1.209 0.841 0.690 0.716 0.977
10 0.714 0.896 0.929 0.610 1.131 0.600 1.059 1.003 1.037 0.982
ARMA (0.1) 0.996




TRE AN HGE o] &3 Z 63
Table 5. Continued
[ BP
MMEN (p, q)
TDNN
L (1,1) (1,2) (1,3) (2,1) (2,2) (2,3) (3,1) (3,2) (33
1 0.743 0.961 0.970 0.940 0.963 0.987 0.859 1.141 1.055 1.046
2 0.724 0.987 0.970 0.756 0.983 0.879 0.941 0.688 1.097 1.590
3 0.701 0.912 0.972 0.888 0.988 0.942 0.976 0.820 0.841 1.061
4 0.694 0.917 0.925 0.908 0.999 1.025 1.084 1.284 1.393 1.060
5 0.669 0.958 0.916 0.691 1.110 0.844 1.056 1.135 1.055 1.015
6 0.826 0.913 0.925 0.961 0.963 0.831 0.874 1.060 1.075 1.055
7 0.783 0.950 0.903 0.840 1.111 0.854 0.870 0.939 0.959 1.053
8 0.740 1.016 0.827 0.786 0.645 0.825 0.797 0.625 1.122 1.062
9 0.751 1.040 0.896 1.0556 1.232 1.198 1.061 1.024 1.219 1.056
10 0.761 1.009 1.062 0.931 1.137 1.250 1.211 0.490 0.839 l.OGL
ARMA (0.1) 1.003
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Figure. 4. One-step-ahead Predictions of linear ARMA



=
oZ
N

64

Table 4 sets out the results of the NMSE estimates. According to the results, for all exchange
rates predictions of the ARMA model do not significantly dominate those of average of data. In
the worst case, the NMSE of the ARMA model exceeds 1 for the BP. Figure 4 also supports the
collapse of the ARMA model in predictions. Meanwhile, it appears that the TDNN slightly im-
prove upon the standard ARMA results with respect to the NMSE and during learning process
they suffer from very slow convergence on target values. By contrast, as one would expect, the
MMEN reveals quite dramatic advance on the predictive power of the TDNN and the ARMA
models. In view of figures 5 and 6, it can be shown that, confirming our expectations, the new
NN approach has very satisfactory performance of one-step-ahead predictions. For the all series,
it turns out that the MMEN has the lowest value of NMSE, 0.173(p=2, q=2, L=3), 0.549(p=2,
q=3, L=2), 0.573(p=1, gq=1, L=8), and 0.490 (p=3, q=2, L=10), respectively. The estimates,

however, may still be unstable except the UD because they have huge variances.
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Figure. 5. One-step-ahead Predictions of TDNN
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Vi. CONCLUDING REMARKS

Strong nonlinearity in changes of exchange rates is detected by several tests for the UD and
the JY. Despite the presence of the nonlinearity standard TDNN cannot significantly improve pre-
dictions. The resulis are quite consistent with the 1dea of this paper that standard nonlinear mod-
els cannot lead to any dramatic advance on the predictive power of linear models. This paper
therefore proposes a method of modified Elman network that can take advantages of both time
domain filter and feedback neural networks. Especially, the recurrent networks are designed to
take account of unconsidered information in the prediction model during its learning process. Our

empirical works provide that the MMEN, as one would expect, has remarkably superior predic-
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tions compared to the TDNN and the ARMA models for all exchange rate series. Consequently,
we can draw a conclusion that the MMEN is particularly useful for economic and financial fore
casts.

Instead of completely forecasting future exchange rates from present ones, a more realistic goal
i1s to build the best model for the exchange rate data. However, there is no formal theory for de
termining optimal networks. Further, Elman-type networks are apt not to be trained optimally by
a standard algorithm due in part to the dependence of the network parameters. These limitations
call for further studies. First, to specify the optimal modified Elman network in application to ex-
tremely dynamic time series data, one need to develop a method of choosing appropriate network
structure including the number of hidden layer and units. Second, genetic algorithm may be use
ful for ensuring the convergence of the modified Elman network on the global minimum.

Finally, for future research state-space theory can be combined with neural network models in
stead of the neural network ARMA models because state-space embedding can preserve an un-
derlying geometrical structure and it may remarkably improve predictions for sufficiently low-di-

mensional dynamics.
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