• 제목/요약/키워드: Backpropagation(BP)

검색결과 56건 처리시간 0.021초

신경망과 유전 알고리즘을 사용한 비선형 시스템의 최적 제어 (Dynamic Neural Units and Genetic Algorithms With Applications to the Optimal Control of Nonlinear Systems)

  • 조현섭;민진경;이형충
    • 한국산학기술학회:학술대회논문집
    • /
    • 한국산학기술학회 2004년도 춘계학술대회
    • /
    • pp.217-220
    • /
    • 2004
  • 'Dynamic Neural Unit'(DNU) based upon the topology of a reverberating circuit in a neuronal pool of the central nervous system. In this thesis, we present a genetic DNU-control scheme for unknown nonlinear systems. Our methodis different from those using supervised loaming algorithms, such as the backpropagation (BP) algorithm, that needs training information In each step. The contributions of this thesis are the new approach to constructing neural network architecture and its trainin.

  • PDF

GA 학습 방법 기반 동적 신경 회로망을 이용한 비선형 시스템의 간접 적응 제어 (Indirect adaptive control of nonlinear systems using Genetic Algorithm based Dynamic neural network)

  • 조현섭;오명관
    • 한국산학기술학회:학술대회논문집
    • /
    • 한국산학기술학회 2007년도 추계학술발표논문집
    • /
    • pp.81-84
    • /
    • 2007
  • In this thesis, we have designed the indirect adaptive controller using Dynamic Neural Units(DNU) for unknown nonlinear systems. Proposed indirect adaptive controller using Dynamic Neural Unit based upon the topology of a reverberating circuit in a neuronal pool of the central nervous system. In this thesis, we present a genetic DNU-control scheme for unknown nonlinear systems. Our method is different from those using supervised learning algorithms, such as the backpropagation (BP) algorithm, that needs training information in each step. The contributions of this thesis are the new approach to constructing neural network architecture and its training.

  • PDF

비선형 시스템의 불확실성을 보상하는 신경회로망 제어 (Uncertainty-Compensating Neural Network Control for Nonlinear Systems)

  • 조현섭;오명관
    • 한국산학기술학회:학술대회논문집
    • /
    • 한국산학기술학회 2008년도 춘계학술발표논문집
    • /
    • pp.152-156
    • /
    • 2008
  • We consider the problem of constructing observers for nonlinear systems with unknown inputs. Connectionist networks, also called neural networks, have been broadly applied to solve many different problems since McCulloch and Pitts had shown mathematically their information processing ability in 1943. In this thesis, we present a genetic neuro-control scheme for nonlinear systems. Our method is different from those using supervised learning algorithms, such as the backpropagation (BP) algorithm, that needs training information in each step. The contributions of this thesis are the new approach to constructing neural network architecture and its training.

  • PDF

SIFT 서술자를 이용한 오프라인 필기체 문자 인식 특징 추출 기법 (Feature Extraction for Off-line Handwritten Character Recognition using SIFT Descriptor)

  • 박정국;김경중
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2010년도 한국컴퓨터종합학술대회논문집 Vol.37 No.1(C)
    • /
    • pp.496-500
    • /
    • 2010
  • 본 논문에서는 SIFT(Scale Invariant Feature Transform) 기술자를 이용하여 오프라인 필기체 문자 인식을 위한 특징 추출방법을 제안한다. 제안하는 방법은 문자의 획의 방향 정보를 제공하는 특징 벡터를 추출함으로써 오프라인 문자 인식에서 성능 향상을 기대할 수 있다. 테스트를 위해 MNIST 필기체 데이터베이스와 UJI Penchar2 필기체 데이터베이스를 이용하였고, BP(backpropagation)신경망과 LDA(Linear Discriminant Analysis), SVM(Support Vector Machine) 분류기에서 성능 테스트를 하였다. 본 논문의 실험결과에서는 일반적으로 사용되는 특징추출로부터 얻어진 특징에 제안된 특징추출을 정합하여 성능항샹을 보인다.

  • PDF

Identification of Partial Discharge Defect Detection in Cast-Resin Power Transformers Using Back-Propagation Algorithm

  • Sung-Wook Kim
    • Journal of information and communication convergence engineering
    • /
    • 제22권3호
    • /
    • pp.231-236
    • /
    • 2024
  • This paper presents a method used to identify partial discharge defects in cast-resin power transformers using a back-propagation algorithm. The Rogowski-type partial discharge (PD) sensor was designed with a planar and thin structure based on a printed circuit board to detect PD signals. PD electrode systems, such as metal protrusions, particle-on-insulators, delamination, and void defects, were fabricated to simulate the PD defects that occur in service. PD characteristics, such as rising time, falling time, pulse width, skewness, and kurtosis without phase-resolved partial discharge patterns, were extracted to intuitively analyze each PD pulse according to the type of PD defect. A backpropagation algorithm was designed to identify PD defects using a virtual instrument (VI) based on the LabVIEW program. The results show that the accuracy rate of back-propagation (BP) algorithm reaches over 92.75% in identifying four types of PD defects.

다중 클래스 SVM을 이용한 스마트폰 중독 자가진단 시스템 (Self-diagnostic system for smartphone addiction using multiclass SVM)

  • 피수영
    • Journal of the Korean Data and Information Science Society
    • /
    • 제24권1호
    • /
    • pp.13-22
    • /
    • 2013
  • 무선으로 응용 프로그램을 다운받아 실행하고 수많은 응용 프로그램들을 통신 접속이 없어도 실행이 가능하다는 점으로 인해 스마트폰 중독이 인터넷 중독보다 심각한 상태이지만 아직까지 스마트폰 중독과 관련된 연구가 부족한 상태이다. 한국정보화진흥원에서 개발한 스마트폰 중독 검사 척도인 S-척도는 문항수가 많아 응답자들이 진단 자체를 회피할 수도 있으며 인구통계학적 변인도 고려하지 않은 상태에서 체크한 문항들에 대한 총점만으로 중독여부를 진단하므로 정확하게 진단하는데 어려움이 있다. 따라서 본 논문에서는 인구통계학적 변인을 포함한 여러 문항들을 추가한 자료들을 대상으로 먼저 스마트폰 중독에 영향을 미치는 중요한 요인들을 추출해 보았다. 추출한 축소문항을 대상으로 데이터마이닝기법 중 하나인 신경망을 이용하여 분류를 하였다. 신경망 학습알고리즘 중에서 BP학습 알고리즘과 다중 SVM을 이용하여 학습을 시켜 비교, 분석 해 본 결과 다중 SVM의 학습율이 조금 더 높게 나타났다. 본 논문에서 제안한 다중 SVM을 이용하여 학습을 한 자가진단 시스템을 이용하면 자료들의 급격한 변화에 대해 뛰어난 적응성을 가지므로 빠른 시간 내에 자신의 중독여부를 정확하게 자가진단 할 수 있다.

Prediction of concrete strength in presence of furnace slag and fly ash using Hybrid ANN-GA (Artificial Neural Network-Genetic Algorithm)

  • Shariati, Mahdi;Mafipour, Mohammad Saeed;Mehrabi, Peyman;Ahmadi, Masoud;Wakil, Karzan;Trung, Nguyen Thoi;Toghroli, Ali
    • Smart Structures and Systems
    • /
    • 제25권2호
    • /
    • pp.183-195
    • /
    • 2020
  • Mineral admixtures have been widely used to produce concrete. Pozzolans have been utilized as partially replacement for Portland cement or blended cement in concrete based on the materials' properties and the concrete's desired effects. Several environmental problems associated with producing cement have led to partial replacement of cement with other pozzolans. Furnace slag and fly ash are two of the pozzolans which can be appropriately used as partial replacements for cement in concrete. However, replacing cement with these materials results in significant changes in the mechanical properties of concrete, more specifically, compressive strength. This paper aims to intelligently predict the compressive strength of concretes incorporating furnace slag and fly ash as partial replacements for cement. For this purpose, a database containing 1030 data sets with nine inputs (concrete mix design and age of concrete) and one output (the compressive strength) was collected. Instead of absolute values of inputs, their proportions were used. A hybrid artificial neural network-genetic algorithm (ANN-GA) was employed as a novel approach to conducting the study. The performance of the ANN-GA model is evaluated by another artificial neural network (ANN), which was developed and tuned via a conventional backpropagation (BP) algorithm. Results showed that not only an ANN-GA model can be developed and appropriately used for the compressive strength prediction of concrete but also it can lead to superior results in comparison with an ANN-BP model.

화상처리법에 의한 쌀 품종별 판별기술 개발 (Development of Identification Method of Rice Varieties Using Image Processing Technique)

  • 권영길;조래광
    • Applied Biological Chemistry
    • /
    • 제41권2호
    • /
    • pp.160-165
    • /
    • 1998
  • 쌀의 품종 식별 기술은 아직까지 적절한 방법이 연구되지 않아, 최근 불법 유통사례가 빈번히 발생하고 있다. 따라서 본 연구에서는 보다 신속하게 현장에서 응용가능한 쌀의 품종을 식별하기 위해서, 비파괴 측정법 중 화상처리법을 응용하였다. MFG board, CCD camera, Zoom lens 및 Ring light로 구성된 화상처리 장치로 쌀알의 영상을 취득하여, Threshold, Median filtering으로 쌀알 영상의 노이즈를 제거하고, 윤곽을 추출하여 중심점에서 360도 각도에 대한 가장자리까지의 거리를 쌀알의 화상데이타로 이용하였다. 쌀 품종 내에서 영상 변이는 다소 있었지만, 형태가 상이한 쌀 품종에서는 품종간 변이 보다 품종 내의 변이가 적었으며, 동일 품종의 쌀알의 착립위치에 따라서는 변이 폭이 매우 적었다. 추출된 화상 데이터는 Normalize, FFT의 전처리 과정으로 정규화 및 변수 축소가 가능하였다. 각 품종의 쌀알의 평균 영상에 Matching하는 Library model과 BP neural network model에 의한 품종 판별 결과, 형태가 상이한 품종간에는 100% 판별 가능하였으며, 형태가 유사한 품종간에는 85%의 판별 결과를 나타내었다.

  • PDF

Text-Independent Speaker Identification System Based On Vowel And Incremental Learning Neural Networks

  • Heo, Kwang-Seung;Lee, Dong-Wook;Sim, Kwee-Bo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.1042-1045
    • /
    • 2003
  • In this paper, we propose the speaker identification system that uses vowel that has speaker's characteristic. System is divided to speech feature extraction part and speaker identification part. Speech feature extraction part extracts speaker's feature. Voiced speech has the characteristic that divides speakers. For vowel extraction, formants are used in voiced speech through frequency analysis. Vowel-a that different formants is extracted in text. Pitch, formant, intensity, log area ratio, LP coefficients, cepstral coefficients are used by method to draw characteristic. The cpestral coefficients that show the best performance in speaker identification among several methods are used. Speaker identification part distinguishes speaker using Neural Network. 12 order cepstral coefficients are used learning input data. Neural Network's structure is MLP and learning algorithm is BP (Backpropagation). Hidden nodes and output nodes are incremented. The nodes in the incremental learning neural network are interconnected via weighted links and each node in a layer is generally connected to each node in the succeeding layer leaving the output node to provide output for the network. Though the vowel extract and incremental learning, the proposed system uses low learning data and reduces learning time and improves identification rate.

  • PDF

초기공정에서 공정변화에 대한 신경망을 이용한 관리도 형태 연구 (A study on the control chart pattern for detecting shifts using neural network in start-up process)

  • 이희춘
    • 한국산업정보학회논문지
    • /
    • 제6권3호
    • /
    • pp.65-70
    • /
    • 2001
  • 이 논문에서는 초기공정에서 개별관측치를 이용하여 공정변화를 지적하는 효율적인 관리도 패턴을 제시한다. 신경망 모델을 적용한 공정관리 기법이 부분적으로 통계적이거나 다른 분석기법보다 우월하지 않을 수도 있지만 학습된 자료관계는 분석적 가정이나 잘못된 모수 때문에 발생되는 오류를 평가할 수 있는 능력이 있으므로 완벽한 공정관리 모델을 추구할 수 있다. 이 논문에서는 BP 알고리즘을 사용하며, 신경망을 이용한 관리도는 작은 공정변화에 특히 예민하다. 공정관리에 영향을 주는 최적의 모수를 구하는 유용한 방법이 신경망을 이용하는 방법임을 제시하며 신경망을 이용한 관리도와 X, EWMA 관리도 비교를 위해 평균 런의 길이를 이용한다.

  • PDF