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Abstract

This paper presents a method used to identify partial discharge defects in cast-resin power transformers using a back-propagation

algorithm. The Rogowski-type partial discharge (PD) sensor was designed with a planar and thin structure based on a printed

circuit board to detect PD signals. PD electrode systems, such as metal protrusions, particle-on-insulators, delamination, and

void defects, were fabricated to simulate the PD defects that occur in service. PD characteristics, such as rising time, falling

time, pulse width, skewness, and kurtosis without phase-resolved partial discharge patterns, were extracted to intuitively analyze

each PD pulse according to the type of PD defect. A backpropagation algorithm was designed to identify PD defects using a

virtual instrument (VI) based on the LabVIEW program. The results show that the accuracy rate of back-propagation (BP)

algorithm reaches over 92.75% in identifying four types of PD defects.

Index Terms: Defect identification, Back-propagation algorithm, Partial discharge, Cast-resin power transformers

I. INTRODUCTION

Cast resin power transformers are the most important equip-

ment used in power facilities to improve the stability of elec-

trical power systems. The epoxy resin used in power transformers

has numerous advantages such as self-extinguishing charac-

teristics, low-cost installation, and low maintenance. There-

fore, cast-resin power transformers are widely used in distribution

systems. However, partial discharge (PD) occurs when the

insulation deteriorates. Although the magnitude of such a dis-

charge is typically small in its early stage, it can progressively

deteriorate insulating materials, resulting in insulation break-

down [1-4]. Most insulation deterioration in cast-resin power

transformers is initiated by the PD. Therefore, the detection of

PD signals is crucial in preventing insulation failure accidents.

Various PD detection methods, such as coupling capaci-

tors, ultra-high frequency (UHF) sensors, and acoustic emis-

sion (AE) sensors, have been used to detect PD signals. A

coupling capacitor is connected directly to a power trans-

former and can detect relatively low-level PD pulses, which

can be calibrated in picocoulombs, as specified in IEC 60270

[5]. However, it is necessary to have a high insulation

strength at high voltage levels, and it is not possible to locate

a PD source. A UHF sensor offers high sensitivity in the

high-frequency range, and enables the precise location of the

PD source. However, a UHF sensor is relatively expensive

compared with other sensors and cannot be calibrated in

picocoulombs. Although an AE sensor is sensitive to exter-

nal noise, it is easy to carry and install [6-9].

Identification of PD defects is crucial for maintaining the

lifespan of power transformers. PD diagnosis techniques for

defect identification are divided into single-pulse analysis in

the time and frequency domains and phase-resolved partial

discharge (PRPD) analysis. The diagnostic method for a sin-

gle pulse intuitively interprets a single PD signal using the

rising time, falling time, pulse width, skewness, kurtosis, and
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frequency components. The method offers easy, quick and

cost-effective measurement and analysis, without requiring

expert decisions. However, it is difficult to analyze complex

PD signals that are vulnerable to noise effects. The PRPD

diagnosis method is widely used to identify the types of PD

defects using pulse magnitude, pulse count, and phase angle.

The PRPD method offers high accuracy and reliability. How-

ever, the PRPD method is considerably expensive for mea-

suring devices and software and requires expert decision-

making to identify PD defects [10-11]. Artificial neural net-

works (ANNs) have been used to overcome these challenges

and improve the accuracy of PD detection and analysis.

This paper presents a method used to identify PD defects

in cast-resin power transformers using a backpropagation

algorithm. To overcome the limitations of conventional PD

sensors, a Rogowski-type sensor [12-13] was designed with

a planar and thin structure based on a printed circuit board

(PCB) to detect PD signals. PD electrode systems with metal

protrusions, particles on insulators, delamination, and void

defects were fabricated to simulate the PD defects that occur

in service. PD characteristics, such as rising time, falling

time, pulse width, skewness, kurtosis, and frequency compo-

nents without PRPD patterns, were extracted to intuitively

analyze each PD pulse according to the type of PD defect. A

backpropagation algorithm was designed to identify PD

defects using a virtual instrument (VI) based on the Lab-

VIEW program.

II. EXPERIMENTAL METHOD

A PD activity occurs at an early stage and is an indicator

of insulation breakdown because it is produced by various

insulation defects inside the power transformer in service

before the insulation breakdown occurs. Therefore, it is

important to detect PD signals before a transformer fails.

Fig. 1 shows the PD electrode systems used to simulate defects

such as metal protrusions, particle-on-insulator, delamina-

tion, and void defects occurring inside the cast-resin power

transformer. A metal protrusion consists of needle electrode

with a curvature radius of 10 μm and a plane electrode of

tungsten-copper alloy with a diameter of 80 mm and thick-

ness of 20 mm. The particle-on-insulator was composed of a

particle with a diameter of 2 mm, an insulator with a diame-

ter of 80 mm, and a thickness of 10 mm. A delamination

specimen was fabricated by a stack of thin dielectric film

with a thickness of 200 μm inserted between high-voltage

plane electrode and epoxy plate. A void specimen with a

diameter of 4 mm was fabricated by injecting air into a

cylindrical aluminum frame using a syringe during the epoxy

curing process. The edges of the electrodes were rounded to

prevent concentration of the electric field.

To replace expensive commercial PD sensors used in cast-

resin power transformers, a Rogowski-type PD sensor was

fabricated to detect PD signals in PD electrode systems, as

shown in Table 1. The Rogowski-type PD sensor was designed

with planar and thin structures on a PCB owing to excellent

qualities such its high sensitivity, low manufacturing cost,

Fig. 1. PD electrode systems

Table 1. Geometrical parameters

Geometrical parameters Values

Number of turns 20 turns

Width of conductor line 2 mm

Distance between conductors 1 mm

Size of PCB (W×H) 120 mm×80 mm

Thickness of PCB 1.6 mm

Fig. 2. Rogowski-type PD sensor
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and good linearity, as shown in Fig. 2. It consists of an air

core and a coil. According to Ampere’s law, a magnetic field

is formed around a PD current flowing inside a defect when

a PD occurs. According to Faraday’s law [14], an induced

voltage is generated in the coils of a Rogowski-type PD sen-

sor owing to the magnetic flux linkage. Moreover, the

Rogowski-type PD sensor could detect a magnetic field with

a high-frequency PD current [15-16].

Fig. 3 shows the experimental setup used in this study. An

oil-immersed transformer was used to apply high voltage

with a maximum output of 20 kV and a current of 100 mA.

To prevent external noise, the PD electrode systems were

filled with insulation gas of up to 0.5 MPa. The PD signals

were measured using a coupling capacitor and measuring

device (Omicron, MPD 600) to confirm the PRPD patterns

for PD occurrence according to the types of PD defects spec-

ified in the IEC 60270 standard. Subsequently, a single PD

signal was measured using a Rogowski-type PD sensor and

recorded using an OSC with a sampling rate of 10 GS/s.

III. RESULT AND ANALYSIS

A Rogowski-type sensor was used to measure typical sin-

gle pulses depending on the four types of PD defects. Param-

eters in the time domain, such as rising time, falling time,

pulse width, skewness, and kurtosis, were extracted. The ris-

ing time is the time interval from 10 to 90% of the peak

value, falling time is the time interval from 90 to 10% of the

peak value, and falling time is the time interval between

50% of the peak value [16]. Skewness measures the asym-

metry of a probability distribution. Positive skewness values

indicated that the distribution was skewed to the right,

whereas negative skewness values indicated that the distribu-

tion was skewed to the left. A symmetrical distribution indi-

cates a skewness of zero. The kurtosis measures the steepness

of a probability distribution. A normal distribution indicates

a kurtosis of 3. A kurtosis value higher than 3 indicates a

steep distribution, whereas kurtosis values lower than 3 indi-

cate an even distribution [17]. Parameters in the frequency

domain, such as the first and second maximum frequencies,

were extracted.

Each single PD pulse was recorded at discharge inception

voltage of 120%, considering voltage regulation ratio in ser-

vice. Summaries of the measured parameters in the time and

frequency domains, which are the average values extracted

from 20 pulses for each case, are listed in Tables 2 and 3,

respectively. For metal protrusion defects, the PD pulses

were shorter than those of other defects. The results showed

that the PD pulses of the particles on the insulator defects

had the longest rising time, falling time, and pulse width.

Each PD pulse has a different shape. For skewness and kur-

tosis, the PD pulse distributions of all defects were skewed

to the right side, and the pulses of the particles on the insula-

tor had a steeper distribution than those of other defects.

Examples of the single pulses and frequency spectra are

shown in Figs. 4 and 5, respectively.

The ANN is composed of connected nodes, called artifi-

cial neurons, organized into seven layers, two hidden layers

with each 10 nodes, and four output layers, as shown in Fig.

6. The input layer receives the data and passes them to the

output layer through the hidden layers. The hidden layers are

the intermediary stages responsible for learning the intricate

structures in the data and creating neural networks between

the input and output layers. During data processing, the fea-

tures were extracted using nonlinear transforms in the hidden

layer. In the output layer, a linear combination of output

weights was based on the output of the problem [18].

In the ANN, PD defects were identified by the back propa-

gation (BP) based on the LabVIEW program in Fig. 7. The

BP algorithm enables the adjustment of weights and biases

through data training as a supervised learning method. It

includes the forward propagation of the input data and back-

propagation of errors between the actual and desired outputs.

The seven parameters extracted from single PD pulses in the

Fig. 3. Experimental configuration

Table 2. Parameters in time domain

Parameters

in time domain

Metal

Protrusion
Particle Delamination Void

Rising time [ns] 1.49 6.63 32.85 6.70

Falling time [ns] 0.89 15.00 15.88 13.83

Pulse width [ns] 1.19 10.82 24.37 10.27

Kurtosis -0.8971 0.3702 -0.9597 -1.2219

Skewness -0.7423 -0.6969 0.2657 -0.1532

Table 3. Parameters in frequency domain

Parameters in 

frequency domain

Metal 

Protrusion
Particle Delamination Void

1st peak [MHz] 40 30 30 30

2nd peak [MHz] 580 890 240 220
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Fig. 4. Typical single PD pulses according to types of defects Fig. 5. Frequency spectrum of PD single pulses
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time and frequency domains were learned 25 times in the

input layer. Depending on the learning results, the output

value was derived and compared with the target value of

one. The differences between the output and target values

were calculated and the BP algorithm operated continuously

until the output value approached the target value [19-20].

The learning rate was 0.1 for 786 epochs, the learning rate

reaches an error mean square of 0.0621. The results show

that the BP algorithm has over 92.75% accuracy rate in iden-

tifying four types of PD defects in Table 4.

IV. DISCUSSION AND CONCLUSIONS

This paper describes a method used to identify partial dis-

charge defects in cast-resin power transformers using a back-

propagation algorithm. The Rogowski-type PD sensor was

designed with a planar and thin structure based on a PCB to

detect PD signals and replace conventional PD sensors. PD

electrode systems, such as metal protrusions, particle-on-

insulators, delamination, and void defects, were fabricated to

simulate the PD defects that occur in cast-resin power trans-

formers. PD characteristics, such as rising time, falling time,

pulse width, skewness, and kurtosis without PRPD patterns,

were extracted to intuitively analyze each PD pulse accord-

ing to the type of PD defect. A BP algorithm based on an

ANN was designed to identify PD defects using the Lab-

VIEW program. From the results, it was confirmed that the

accuracy rate of the proposed BP algorithm has over 92.75%

to identify four types of PD defects. In the future, additional

types of PD defects, such as cracks and particles on insula-

tors, should be investigated.
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