• Title/Summary/Keyword: Backpropagation(BP)

Search Result 55, Processing Time 0.023 seconds

Neural and MTS Algorithms for Feature Selection

  • Su, Chao-Ton;Li, Te-Sheng
    • International Journal of Quality Innovation
    • /
    • v.3 no.2
    • /
    • pp.113-131
    • /
    • 2002
  • The relationships among multi-dimensional data (such as medical examination data) with ambiguity and variation are difficult to explore. The traditional approach to building a data classification system requires the formulation of rules by which the input data can be analyzed. The formulation of such rules is very difficult with large sets of input data. This paper first describes two classification approaches using back-propagation (BP) neural network and Mahalanobis distance (MD) classifier, and then proposes two classification approaches for multi-dimensional feature selection. The first one proposed is a feature selection procedure from the trained back-propagation (BP) neural network. The basic idea of this procedure is to compare the multiplication weights between input and hidden layer and hidden and output layer. In order to simplify the structure, only the multiplication weights of large absolute values are used. The second approach is Mahalanobis-Taguchi system (MTS) originally suggested by Dr. Taguchi. The MTS performs Taguchi's fractional factorial design based on the Mahalanobis distance as a performance metric. We combine the automatic thresholding with MD: it can deal with a reduced model, which is the focus of this paper In this work, two case studies will be used as examples to compare and discuss the complete and reduced models employing BP neural network and MD classifier. The implementation results show that proposed approaches are effective and powerful for the classification.

Application of artificial neural networks to a double receding contact problem with a rigid stamp

  • Cakiroglu, Erdogan;Comez, Isa;Erdol, Ragip
    • Structural Engineering and Mechanics
    • /
    • v.21 no.2
    • /
    • pp.205-220
    • /
    • 2005
  • This paper presents the possibilities of adapting artificial neural networks (ANNs) to predict the dimensionless parameters related to the maximum contact pressures of an elasticity problem. The plane symmetric double receding contact problem for a rigid stamp and two elastic strips having different elastic constants and heights is considered. The external load is applied to the upper elastic strip by means of a rigid stamp and the lower elastic strip is bonded to a rigid support. The problem is solved under the assumptions that the contact between two elastic strips also between the rigid stamp and the upper elastic strip are frictionless, the effect of gravity force is neglected and only compressive normal tractions can be transmitted through the interfaces. A three layered ANN with backpropagation (BP) algorithm is utilized for prediction of the dimensionless parameters related to the maximum contact pressures. Training and testing patterns are formed by using the theory of elasticity with integral transformation technique. ANN predictions and theoretical solutions are compared and seen that ANN predictions are quite close to the theoretical solutions. It is demonstrated that ANNs is a suitable numerical tool and if properly used, can reduce time consumed.

Multi-objective optimization of printed circuit heat exchanger with airfoil fins based on the improved PSO-BP neural network and the NSGA-II algorithm

  • Jiabing Wang;Linlang Zeng;Kun Yang
    • Nuclear Engineering and Technology
    • /
    • v.55 no.6
    • /
    • pp.2125-2138
    • /
    • 2023
  • The printed circuit heat exchanger (PCHE) with airfoil fins has the benefits of high compactness, high efficiency and superior heat transfer performance. A novel multi-objective optimization approach is presented to design the airfoil fin PCHE in this paper. Three optimization design variables (the vertical number, the horizontal number and the staggered number) are obtained by means of dimensionless airfoil fin arrangement parameters. And the optimization objective is to maximize the Nusselt number (Nu) and minimize the Fanning friction factor (f). Firstly, in order to investigate the impact of design variables on the thermal-hydraulic performance, a parametric study via the design of experiments is proposed. Subsequently, the relationships between three optimization design variables and two objective functions (Nu and f) are characterized by an improved particle swarm optimization-backpropagation artificial neural network. Finally, a multi-objective optimization is used to construct the Pareto optimal front, in which the non-dominated sorting genetic algorithm II is used. The comprehensive performance is found to be the best when the airfoil fins are completely staggered arrangement. And the best compromise solution based on the TOPSIS method is identified as the optimal solution, which can achieve the requirement of high heat transfer performance and low flow resistance.

Self-Learning Control of Cooperative Motion for Humanoid Robots

  • Hwang, Yoon-Kwon;Choi, Kook-Jin;Hong, Dae-Sun
    • International Journal of Control, Automation, and Systems
    • /
    • v.4 no.6
    • /
    • pp.725-735
    • /
    • 2006
  • This paper deals with the problem of self-learning cooperative motion control for the pushing task of a humanoid robot in the sagittal plane. A model with 27 linked rigid bodies is developed to simulate the system dynamics. A simple genetic algorithm(SGA) is used to find the cooperative motion, which is to minimize the total energy consumption for the entire humanoid robot body. And the multi-layer neural network based on backpropagation(BP) is also constructed and applied to generalize parameters, which are obtained from the optimization procedure by SGA, in order to control the system.

Dynamic Neural Units and Genetic Algorithms With Applications to the Control of Unknown Nonlinear Systems (동적 신경망과 Geneo-tic Algorithms를 적용한 비선형 시스템의 제어)

  • Cho, Hyun-Seob;Min, Jin-Kyoung;Roh, Yong-Gi;Jung, Byung-Jo;Jang, Sung-Whan
    • Proceedings of the KIEE Conference
    • /
    • 2006.07d
    • /
    • pp.1943-1944
    • /
    • 2006
  • "Dynamic Neural Unit"(DNU) based upon the topology of a reverberating circuit in a neuronal pool of the central nervous system. In this thesis, we present a genetic DNU-control scheme for unknown nonlinear systems. Our methodis different from those using supervised learning algorithms, such as the backpropagation (BP) algorithm, that needs training information in each step. The contributions of this thesis are the new approach to constructing neural network architecture and its trainin

  • PDF

A Study on the Estimation of Earth Resistivity using Backpropagation Algorithm (역전파알고리즘을 이용한 대피저항율추정에 관한 연구)

  • Park, P.K.;Yu, B.H.;Seok, J.W.;Choi, J.K.;Jung, G.J.;Kim, J.H.
    • Proceedings of the KIEE Conference
    • /
    • 1997.11a
    • /
    • pp.203-205
    • /
    • 1997
  • In this paper, we present a useful method of estimating earth resistivity using BP algorithm in Neural-Networks. From this method, equivalent earth resistivity(EER) can be obtained directly using training data composed of field-measured apparent resistivity and probe distance. This approach can reduce errors which is conventionally raised from manual operation of calculating EER. To evaluate its accuracy and convenience, the result of proposed method is compared to that of conventional methods, graphical($\rho$-a graph) and numerical(CDEGS program), respectively.

  • PDF

Image Recognition by Learning Multi-Valued Logic Neural Network

  • Kim, Doo-Ywan;Chung, Hwan-Mook
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.2 no.3
    • /
    • pp.215-220
    • /
    • 2002
  • This paper proposes a method to apply the Backpropagation(BP) algorithm of MVL(Multi-Valued Logic) Neural Network to pattern recognition. It extracts the property of an object density about an original pattern necessary for pattern processing and makes the property of the object density mapped to MVL. In addition, because it team the pattern by using multiple valued logic, it can reduce time f3r pattern and space fer memory to a minimum. There is, however, a demerit that existed MVL cannot adapt the change of circumstance. Through changing input into MVL function, not direct input of an existed Multiple pattern, and making it each variable loam by neural network after calculating each variable into liter function. Error has been reduced and convergence speed has become fast.

Dynamic Neural Units and Genetic Algorithms With Applications to the Control of Unknown Nonlinear Systems (Dynamic Neural Unit와 GA를 이용한 비선형 동적 시스템 제어)

  • Cho, Hyeon-Seob;Roh, Yong-Gi;Jang, Sung-Whan
    • Proceedings of the KAIS Fall Conference
    • /
    • 2006.05a
    • /
    • pp.311-315
    • /
    • 2006
  • "Dynamic Neural Unit"(DNU) based upon the topology of a reverberating circuit in a neuronal pool of the central nervous system. In this thesis, we present a genetic DNU-control scheme for unknown nonlinear systems. Our methodis different from those using supervised learning algorithms, such as the backpropagation (BP) algorithm, that needs training information in each step. The contributions of this thesis are the new approach to constructing neural network architecture and its trainin

  • PDF

Neuro-Control of Nonlinear Systems Using Genetic Algorithms (Genetic Algorithms를 이용한 비선형 시스템의 신경망 제어)

  • Cho, Hyeon-Seob;Min, Jin-Kyoung;Ryu, In-Ho
    • Proceedings of the KAIS Fall Conference
    • /
    • 2006.05a
    • /
    • pp.316-319
    • /
    • 2006
  • Connectionist networks, also called neural networks, have been broadly applied to solve many different problems since McCulloch and Pitts had shown mathematically their information processing ability in 1943. In this thesis, we present a genetic neuro-control scheme for nonlinear systems. Our method is different from those using supervised learning algorithms, such as the backpropagation (BP) algorithm, that needs training information in each step. The contributions of this thesis are the new approach to constructing neural network architecture and its training.

  • PDF

Dynamic Neural Units and Genetic Algorithms With Applications to the Control of Unknown Nonlinear Systems (미지의 비선형 시스템 제어를 위한 DNU와 GA알고리즘 적용에 관한 연구)

  • XiaoBing, Zhao;Min, Lin;Cho, Hyeon-Seob;Jeon, Jeong-Chay
    • Proceedings of the KIEE Conference
    • /
    • 2002.07d
    • /
    • pp.2486-2489
    • /
    • 2002
  • Pool of the central nervous system. In this thesis, we present a genetic DNU-control scheme for unknown nonlinear systems. Our method is different from those using supervised learning algorithms, such as the backpropagation (BP) algorithm, that needs training information in each step. The contributions of this thesis are the new approach to constructing neural network architecture and its training.

  • PDF