• Title/Summary/Keyword: Backoff

Search Result 186, Processing Time 0.022 seconds

A Backoff Scheme to Improve Throughput over IEEE 802.11 Wireless LANs (IEEE 802.11 무선 LAN에서 처리율 향상을 위한 백오프 방식)

  • 장길웅
    • Journal of KIISE:Information Networking
    • /
    • v.31 no.2
    • /
    • pp.217-223
    • /
    • 2004
  • This paper proposes a new backoff scheme to improve the throughput of stations over wireless local area networks. It is designed to carry out the proposed backoff scheme using information of basic service area, such as number of stations, in terms of the throughput. Basic idea of the proposed backoff scheme is that we change the contention window size for backoff time as collisions increase. We evaluate the performance of the proposed backoff scheme using Markov model analysis and compare it with the IEEE 802.11e backoff scheme. The numerical results indicate that the Proposed backoff scheme may offer better performance than the conventional backoff scheme in terms of the throughput.

Service Differentiation in Ad Hoc Networks by a Modified Backoff Algorithm (애드혹 네트워크 상에서 backoff 알고리즘 수정에 의한 서비스 차별화)

  • Seoung-Seok Kang;Jin Kim
    • Journal of KIISE:Information Networking
    • /
    • v.31 no.4
    • /
    • pp.414-428
    • /
    • 2004
  • Many portable devices are coming to be commercially successful and provide useful services to mobile users. Mobile devices may request a variety of data types, including text and multimedia data, thanks to the rich content of the Internet. Different types of data and/or different classes of users may need to be treated with different qualities of service. The implementation of service differentiation in wireless networks is very difficult because of device mobility and wireless channel contention when the backoff algorithm is used to resolve contention. Modification of the t)mary exponential backoff algorithm is one possibility to allow the design of several classes of data traffic flows. We present a study of modifications to the backoff algorithm to support three classes of flows: sold, silver, and bronze. For example, the gold c]ass flows are the highest priority and should satisfy their required target bandwidth, whereas the silver class flows should receive reasonably high bandwidth compared to the bronze class flows. The mixture of the two different transport protocols, UDP and TCP, in ad hoc networks raises significant challenges when defining backoff algorithm modifications. Due to the different characteristics of UDP and TCP, different backoff algorithm modifications are applied to each class of packets from the two transport protocols. Nevertheless, we show by means of simulation that our approach of backoff algorithm modification clearly differentiates service between different flows of classes regardless of the type of transport protocol.

Grant-Free Random Access in Multicell Massive MIMO Systems with Mixed-Type Devices: Backoff Mechanism Optimizations under Delay Constraints

  • Yingying, Fang;Qi, Zhang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.1
    • /
    • pp.185-201
    • /
    • 2023
  • Grant-free random access (GFRA) can reduce the access delay and signaling cost, and satisfy the short transmission packet and strict delay constraints requirement in internet of things (IoT). IoT is a major trend in the future, which is characterized by the variety of applications and devices. However, most existing studies on GFRA only consider a single type of device and omit the effect of access delay. In this paper, we study GFRA in multicell massive multipleinput multiple-output (MIMO) systems where different types of devices with various configurations and requirements co-exist. By introducing the backoff mechanism, each device is randomly activated according to the backoff parameter, and active devices randomly select an orthogonal pilot sequence from a predefined pilot pool. An analytical approximation of the average spectral efficiency for each type of device is derived. Based on it, we obtain the optimal backoff parameter for each type of devices under their delay constraints. It is found that the optimal backoff parameters are closely related to the device number and delay constraint. In general, devices that have larger quantity should have more backoff time before they are allowed to access. However, as the delay constraint become stricter, the required backoff time reduces gradually, and the device with larger quantity may have less backoff time than that with smaller quantity when its delay constraint is extremely strict. When the pilot length is short, the effect of delay constraints mentioned above works more obviously.

Binary Negative-Exponential Backoff Algorithm to Enhance The Performance of IEEE 802.11 WLAN (IEEE 802.11 무선랜의 성능 향상을 위한 Binary Negative-Exponential Backoff 알고리즘)

  • Ki, Hyung-Joo;Choi, Seung-Hyuk;Chung, Min-Young;Lee, Tae-Jin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.12A
    • /
    • pp.1229-1237
    • /
    • 2006
  • IEEE 802.11 has employed distributed coordination function (DCF) adopting carrier sense multiple access with collision avoidance (CSMA/CA). To effectively resolve collisions, DCF uses binary exponential backoff (BEB) algorithm with three parameters, i.e., backoff stage, backoff counter and contention window. If a collision occurs, stations involving in the collision increase their backoff stages by one and double their contention window sizes. However, DCF with BEB wastes wireless resource when there are many contending stations. Therefore, in this paper, to enhance the performance of wireless LAN, we propose binary negative-exponential backoff (BNEB) algorithm which maintains a maximum contention window size during collisions and reduces a contention window size to half after successful transmission of a frame without retransmissions. For IEEE 802.11, 802.11a and 802.11b standards, we also compare the performance of DCF with BEB to that with BNEB.

A Multi-Priority Service Differentiated and Adaptive Backoff Mechanism over IEEE 802.11 DCF for Wireless Mobile Networks

  • Zheng, Bo;Zhang, Hengyang;Zhuo, Kun;Wu, Huaxin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.7
    • /
    • pp.3446-3464
    • /
    • 2017
  • Backoff mechanism serves as one of the key technologies in the MAC-layer of wireless mobile networks. The traditional Binary Exponential Backoff (BEB) mechanism in IEEE 802.11 Distributed Coordination Function (DCF) and other existing backoff mechanisms poses several performance issues. For instance, the Contention Window (CW) oscillations occur frequently; a low delay QoS guarantee cannot be provided for real-time transmission, and services with different priorities are not differentiated. For these problems, we present a novel Multi-Priority service differentiated and Adaptive Backoff (MPAB) algorithm over IEEE 802.11 DCF for wireless mobile networks in this paper. In this algorithm, the backoff stage is chosen adaptively according to the channel status and traffic priority, and the forwarding and receding transition probability between the adjacent backoff stages for different priority traffic can be controlled and adjusted for demands at any time. We further employ the 2-dimensional Markov chain model to analyze the algorithm, and derive the analytical expressions of the saturation throughput and average medium access delay. Both the accuracy of the expressions and the algorithm performance are verified through simulations. The results show that the performance of the MPAB algorithm can offer a higher throughput and lower delay than the BEB algorithm.

Implementation of IEEE 802.15.4 Channel Analyzer for Evaluating WiFi Interference (WiFi의 간섭을 평가하기 위한 IEEE 802.15.4 채널분석기의 구현)

  • Song, Myong-Lyol;Jin, Hyun-Joon
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.63 no.2
    • /
    • pp.81-88
    • /
    • 2014
  • In this paper, an implementation of concurrent backoff delay process on a single chip with IEEE 802.15.4 hardware and 8051 processor core that can be used for analyzing the interference on IEEE 802.15.4 channels due to WiFi traffics is studied. The backoff delay process of IEEE 802.15.4 CSMA-CA algorithm is explained. The characteristics of random number generator, timer, and CCA register included in the single chip are described with their control procedure in order to implement the process. A concurrent backoff delay process to evaluate multiple IEEE 802.15.4 channels is proposed, and a method to service the associated tasks at sequentially ordered backoff delay events occurring on the channels is explained. For the implementation of the concurrent backoff delay process on a single chip IEEE 802.15.4 hardware, the elements for the single channel backoff delay process and their control procedure are used to be extended to multiple channels with little modification. The medium access delay on each channel, which is available after execution of the concurrent backoff delay process, is displayed on the LCD of an IEEE 802.15.4 channel analyzer. The experimental results show that we can easily identify the interference on IEEE 802.15.4 channels caused by WiFi traffics in comparison with the way displaying measured channel powers.

Variable Backoff Stage(VBS) Algorithm to Reduce Collisions in IEEE 802.11 DCF (IEEE 802.11 DCF 에서의 충돌 감소를 위한 가변 백오프 스테이지(VBS) 알고리즘)

  • Kang, Seongho;Choo, Young-yeol
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.6
    • /
    • pp.1333-1340
    • /
    • 2015
  • IEEE 802.11 MAC(Media Access Control) defines DCF(Distributed Coordination Function) for data transmission control. BEB(Binary Exponential Backoff) algorithm of DCF has a problem that if the number of stations connected are over a certain threshold, it degrades network performance because of packet collisions caused from the minimum contention window size. To cope with this problem, we proposed a novel algorithm, named as VBS(Variable Backoff Stage) algorithm, which adjusts the rate of backoff stage increment depending on the number of stations associated with an AP(Access Point). Analytic model of proposed algorithm was derived and simulations on the BEB and the VBS algorithms have been conducted on the OFDM (Orthogonal Frequency Division Multiplexing) method. Simulation results showed that when the rate of backoff state increment was 5 and 10, the number of retransmission were reduced to 1/5 and 1/10 comparing to that of BEB, respectively. Our algorithm showed improvement of 19% and 18% in network utilization, respectively. Packet delay was reduced into 1/12.

A New Backoff algorithm considering Hop Count for the IEEE 802.11 Distributed Coordination Function

  • Nam, Jae-Hyun
    • Journal of information and communication convergence engineering
    • /
    • v.5 no.3
    • /
    • pp.205-208
    • /
    • 2007
  • The IEEE 802.11 is a MAC protocol which has been standardized by IEEE for Wireless Local Area Networks (WLANs). In the IEEE 802.11 WLANs, network nodes experiencing collisions on the shared channel need to backoff for a random period of time, which is uniformly selected from the Contention Window (CW). This contention window is dynamically controlled by the Binary Exponential Backoff (BEB) algorithm. However, the BEB scheme suffers from a fairness problem; some nodes can achieve significantly larger throughput than others. This paper proposes a new backoff algorithm for the IEEE 802.11 DCF scheme. This algorithm uses the hop count for considering fairness. It causes flows with high hop count to generate short backoff interval than those with low hop count, thus getting high priority. Therefore, when a collision occurs, the modified IEEE 802.11 DCF assigns higher priority to flow to be close to a destination.

A Reactive Cross Collision Exclusionary Backoff Algorithm in IEEE 802.11 Network

  • Pudasaini, Subodh;Chang, Yu-Sun;Shin, Seok-Joo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.4 no.6
    • /
    • pp.1098-1115
    • /
    • 2010
  • An inseparable challenge associated with every random access network is the design of an efficient Collision Resolution Algorithm (CRA), since collisions cannot be completely avoided in such network. To maximize the collision resolution efficiency of a popular CRA, namely Binary Exponential Backoff (BEB), we propose a reactive backoff algorithm. The proposed backoff algorithm is reactive in the sense that it updates the contention window based on the previously selected backoff value in the failed contention stage to avoid a typical type of collision, referred as cross-collision. Cross-collision would occur if the contention slot pointed by the currently selected backoff value appeared to be present in the overlapped portion of the adjacent (the previous and the current) windows. The proposed reactive algorithm contributes to significant performance improvements in the network since it offers a supplementary feature of Cross Collision Exclusion (XCE) and also retains the legacy collision mitigation features. We formulate a Markovian model to emulate the characteristics of the proposed algorithm. Based on the solution of the model, we then estimate the throughput and delay performances of WLAN following the signaling mechanisms of the Distributed Coordination Function (DCF) considering IEEE 802.11b system parameters. We validate the accuracy of the analytical performance estimation framework by comparing the analytically obtained results with the results that we obtain from the simulation experiments performed in ns-2. Through the rigorous analysis, based on the validated model, we show that the proposed reactive cross collision exclusionary backoff algorithm significantly enhances the throughput and reduces the average packet delay in the network.

Load-based Dynamic Backoff Algorithm in Contention-based Wireless Shared Medium (단일 경쟁 매체에서의 새로운 로드 기반 동적 매체 접속 제어 백오프 알고리즘)

  • Seo Chang-Keun;Wang Weidong;Yoo Sang-Jo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.6B
    • /
    • pp.406-415
    • /
    • 2005
  • The standards which use shared medium like IEEE 802.11 wireless LAN have transmission opportunity by contention in contention period. If there are collisions in contention period, medium access control protocol may solve problem by using backoff algorithm. Backoff algorithm is important part in medium access control, but legacy backoff method which is used under IEEE 802.11 standards is not adjusted when load is heavy because of increasing collisions. In this paper, we propose a new load-based dynamic backoff algorithm in contention-based wireless shared medium to improve throughput of medium and to reduce the number of collisions. Proposed backoff algorithm can increase the network utilization about $20\%$ higher than that of binary exponential backoff algorithm.