• Title/Summary/Keyword: Backing plate

Search Result 33, Processing Time 0.028 seconds

A Study on the Strength of the Mounting Bolt of a Backing Plate During the Braking Performance Test of the Wheeled Vehicle (제동 성능 시험때 차량 Backing Plate 체결 볼트의 강도에 관한 연구)

  • 양생모
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.7 no.3
    • /
    • pp.56-63
    • /
    • 1985
  • The strength of the mounting bolt of a backing plate is investigated with field test to provide the basic data in the safety evaluation of the wheeled vehicle. As a result, during the braking performance test at a vehicle speed of 32km/h, the shearing stress of mounting bolt is 20.5kg/mm$^{2}$ because the translatory mass of the vehicle is increased 21.6 per cent to incorporate the rotating-mass effect of wheels and other permanently engaged rotating parts.

  • PDF

Fracture Mechanism of Ceramic/Glass-fiber-reinforced-composites Laminate by High Velocity Impact (세라믹/유리섬유강화복합재 적층판의 고속충돌에 의한 파괴거동)

  • Jung Woo-Kyun;Lee Woo-Il;Kim Hee-Jae;Kwon Jeong-Won;Ahn Sung-Hoon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.5 s.182
    • /
    • pp.170-176
    • /
    • 2006
  • Multi-layered laminate made of ceramic/composite have been developed to prevent penetration by high velocity impact. In this study, three-layered plates consisted of 1) cover layer (glass fiber reinforced polymer), 2) $Al_{2}O_{3}$, ceramic plate, and 3) backing plate (glass fiber reinforced polymer) were fabricated with various conditions and tested for their ballistic protection characteristic. The ceramic composite laminates, with thin backing plate, were completely penetrated by armor piercing projectile. The plate with inserted rubber between ceramic and backing plate showed excellent ballistic protection, though completely penetrated by the second shoot.

Design of Magnetically Levitation Electromagnet Conveying Non-contact Steel Plate (비접촉 철판운송용 자기부상 전자석의 설계)

  • Cho, G.B.;Baek, H.L.;Oh, G.K.;Kim, Y.D.;Kim, H.J.
    • Proceedings of the KIEE Conference
    • /
    • 1995.07a
    • /
    • pp.107-109
    • /
    • 1995
  • This paper considers backing structure of non-contact steel plate using magnectically levitation and aspect-quality factor is defined by estimation of electromagnet-aspect attraction steel plate. Characteristics of attraction power is studied in cylindrical electromagnet, U-type electromagnet, E-type electromagnet by aspect-quality factor. Designing and manufacturing electromagnet attraction steel plate, propriety of experimental results is confirmed.

  • PDF

Tile Size Dependency of Ballistic Performance in Alumina (알루미나의 시편크기가 방탄거동에 미치는 영향)

  • ;S.J. Bless
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.3
    • /
    • pp.366-370
    • /
    • 1995
  • The ballistic efficiency of alumina tiles with various sizes, shapes, and target configurations was measured by the thick backing plate technique. The ballistic efficiency of square tiles roughly 8 mm thick struck by 12.7mm diameter bullets rapidly increased with tile size up to about 100mm, then tended to saturate. Circular shape tiles had lower ballistic efficiencies than those of square shape tiles for the same width and thickness. Small tiles (50mm) that were recessed in aluminum wells had a significantly higher ballistic efficiency than tiles placed on a flat surface. However, the difference in the ballistic efficiency between the two target configurtions became small at larger tile sizes. All the results could be explained by the effect of reflected waves at edges and the propagation of resulting cracks on the penetration process.

  • PDF

An experimental study on the ballistic performance of FRP-steel plates completely penetrated by a hemispherical-nosed projectile

  • Chen, Changhai;Zhu, Xi;Hou, Hailiang;Zhang, Lijun;Shen, Xiaole;Tang, Ting
    • Steel and Composite Structures
    • /
    • v.16 no.3
    • /
    • pp.269-288
    • /
    • 2014
  • Experiments were carried out to investigate the ballistic performance of fiber reinforced plastic(FRP)-steel plates completely penetrated by hemispherical-nosed projectiles at sub-ordnance velocities greater than their ballistic limits. The FRP-steel plate consists of a front FRP laminate and a steel backing plate. Failure mechanisms and impact energy absorptions of FRP-steel plates were analyzed and compared with FRP laminates and single steel plates. The effects of relative thickness, manufacturing method and fabric type of front composite armors as well as the joining style between front composite armors and steel backing plates on the total perforation resistance of FRP-steel plates were explored. It is found that in the case of FRP-steel plates completely penetrated by hemispherical-nosed projectiles at low velocities, the failure modes of front composite armors are slightly changed while for steel backing plates, the dominate failure modes are greatly changed due to the influence of front composite armors. The relative thickness and fabric type of front composite armors as well as the joining style of FRP-steel plates have large effects whereas the manufacturing method of front composite armors has slight effect on the total perforation resistance of FRP-steel plates.

Development of method to remove weld scallop and ceramic backing material of wedge type and its application

  • Kang, Sung-Koo;Yang, Jong-Soo;Kim, Ho-Kyung
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.7 no.2
    • /
    • pp.315-323
    • /
    • 2015
  • The weld scallop has been used for joining T-bars. There are a lot of weld scallops in shipbuilding. It is difficult to perform scallop welding due to the inconvenient welding position. This results in many problems such as porosity, slag inclusion, etc. In this study, a new method is devised to remove weld scallops by incorporating a Ceramic Backing Material (CBM). The weld scallop is removed by an elongation of the v groove. In order to insert a CBM into the groove without a weld scallop, a wedge-shaped CBM is developed. The top side of the developed CBM is similar to the shape of a general back bead. The bottom surface has a saw-toothed shape for cutting at a suitable length. This can be attached to the root side of a face plate using adhesive tape, just like a general CBM. Welding experiments in normal and abnormal conditions are carried out and the possibility of burn-through is examined. This CBM's applicability to shipbuilding is verified.

Penetration Mechanisms of Ceramic Composite Armor Made of Alumina/GFRP

  • Jung, Woo-Kyun;Lee, Hee-Sub;Jung, Jae-Won;Ahn, Sung-Hoon;Lee, Woo-Il;Kim, Hee-Jae;Kwon, Jeong-Won
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.8 no.4
    • /
    • pp.38-44
    • /
    • 2007
  • Combat vehicles are frequently maneuvered in battlefields when the lives of combatants are being threatened. These vehicles are important elements that influence the consequences of a battle. Their armor must be lightweight and provide excellent protection to ensure successful operations. Ceramic composite armor has recently been developed by many countries to fulfill these requirements. We reviewed previous research to determine an effective armor design, and then fabricated a composite armor structure using $Al_2O_3$ and glass fiber-reinforced polymer. Specimens were manufactured under controlled conditions using different backing plate thicknesses and bonding methods for the ceramic layer and the backing plate. The penetration of an armor-piercing bullet was evaluated from ballistic protection tests. The bonding method between the ceramic layer and the fiber-reinforced polymer influenced the ballistic protection performance. A bonding layer using rubber provided the best protection.

Rear drum brake creak(scratching) noise improvement during braking(or parking apply) (제동시 발생하는 리어 드럼브레이크 creak(scratching) 노이즈 개선)

  • Jang, Myunghoon;Park, Shin;Kim, Sunho;Kim, Sunghwan
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.04a
    • /
    • pp.486-491
    • /
    • 2013
  • Creak noise is kind of scratching noise which is usually generated in drum brake system on the vehicle. When driver brakes vehicle or applies parking lever, drum brake shoe moves to the drum side to stop the vehicle. And at that time, moving shoe scratches backing plate ledge surface, and that makes scratching noise in special condition. This study presents how we can generate creak noise in the laboratory and how we can reduce it by experimental approach. Through several and various type of tests, we could generate creak noise with damage on ledge area of the backing plate in the lab and we verified tab type shoe design can reduce this scratching noise. As a result of this study, we notified how creak noise happens in the vehicle, and that tab type design shoe has good performance of ledge area damage based on lab test(rig & dynamometer equipment), and that this can reduce potential risk of creak noise in the field.

  • PDF

A Study on the Squeal Noise of Drum Brakes (드럼 브레이크의 스퀼 소음에 관한 연구)

  • 이장무;김종현;유성우;안창기
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.9
    • /
    • pp.111-116
    • /
    • 1998
  • The squeal of drum brakes was investigated numerically and experimentally. Modal testings were performed for shoes, drums, backing plates and their assemblies. In order to predict the squeal phenomena, stability analysis was performed based on a simplified self-excited vibration model. Based on modal testings, the dynamic properties of the brake elements and the parameters used in this analysis were determined. The geometries of shoes and drums were also considered. The result shows that the modification methods of the shoe and the drum design are feasible for noise reduction.

  • PDF

Failure Mode Analysis and Friction Material Development of the KTX tread Brake (고속철도 제륜자 결함분석 및 제륜자 개발)

  • Baek, Jong-Kil;Goo, Byeong-Choon;Koo, Jeong-Seo
    • Journal of the Korean Society for Railway
    • /
    • v.14 no.2
    • /
    • pp.109-115
    • /
    • 2011
  • The shoe brake of the KTX is used in low speed when the electric brake is not effective. The main purpose of the shoe brake is to stop the train to a desired stop point at the station. Lots of defects have been encountered in the shoe brake unit since the KTX started its operation. To improve the reliability of shoe brake unit of the KTX power car, first of all, failure modes of the KTX shoe brake unit were analyzed. Main failure modes are cracks in the shoe friction material and fracture in the welded joints of the shoe backing steel structure. Several methods to remove the defects of the shoe brake unit were proposed and on-board tests were carried out: Increase of the strength of the shoe key and shoe cam, which decreased a little the occurrence of cracks in the shoe friction material; Redesign of the shoe backing steel structure, which eliminated the occurrence of the cracks in the backing plate but could not solve completely the crack problem in the shoe friction material; Development of a new friction material, which with redesign of the shoe backing steel structure could solve satisfactorily the crack problem in the shoe friction material.