영상 처리 기법을 이용한 영상 인식 분야는 버스 승차 및 하차 시에 승객을 움직이는 객체로 검출하고 개수하는 방법이 연구되고 있다. 이러한 기술 중에는 인공지능 기법의 하나인 딥러닝 기법이 사용되고 있다. 또 다른 방법으로 스테레오 비전 카메라를 이용하여 객체를 검출하는 방법도 사용되고 있다. 그러나 이러한 방법들은 객체를 검출할 때 사용되는 장비의 연산량이 많이 들어 고가의 하드웨어 장비가 필요하다. 그러나 대중교통 중 하나인 버스 승객을 검출하기 위해 상대적으로 연산량이 적은 기법을 이용하여 다양한 장비에 맞는 영상 처리 기술이 필요하다. 이에 본 논문에서는 다양한 장비에 맞는 이동 객체 검출 기법 중 배경 제거를 통한 객체의 윤곽선을 검출하여 대중교통 중의 하나인 버스에 탑승객의 수를 효율적으로 획득 할 수 있는 기법을 제안한다. 실험 결과 스테레오 비전을 장착한 장비보다 더 저사양의 장비에서 약 70%의 정확도로 승객을 개수하였다.
Target detection by the infrared imager depends on the apparent temperature difference between the target and the background, so it is essential to predict apparent temperature variations for this purpose. In this study, thermal analysis program Including conduction, convection and radiation is developed and applied to a representative geometry adequate for examining the apparent temperature characteristics. The results show that the longwave emissivity in association with the background temperature affects the apparent temperature strongly but does not affect the physical temperature. It is revealed that the background temperature plays a role of tuning the apparent temperature. As the longwave emissivity decreases, the apparent temperature decreases when the target is hotter than the background, whereas it increases in the reversed situation. These findings imply that an effective surface treatment, such as painting of a less emissive material, may provide a less detection probability and contribute to preventing the target from being detected at night.
배경 모델링 및 물체 검출 기술은 실시간 비디오 처리 기술에서 중요한 부분을 차지하고 있다. 그동안 많은 연구들이 진행되었지만 안정적인 성능을 위해서는 아직도 상당한 계산량을 요구한다. 이 때문에 고해상도 영상 처리나 객체 추적, 행동 분석 및 대상 인식 등의 알고리즘과 함께 사용되는 경우, 실시간 처리에 어려움이 있다. 본 논문에서는 가장 일반적으로 쓰이는 배경 모델링 기법 중의 하나인 혼합정규모델(mixtures of Gaussian)을 근사화한 효과적인 다봉(multimodal) 배경 모델링 및 물체 검출 방법을 제안한다. 근사화의 타당성과 각 과정들을 유도 및 검증하였고, 실험을 통해 제안하는 알고리즘이 기존 방법의 안정성과 유연성을 유지하면서 3배 이상의 처리 속도를 나타냄을 보였다.
International Journal of Control, Automation, and Systems
/
제6권5호
/
pp.746-754
/
2008
This paper proposes a method to detect calibration patterns for accurate camera calibration under complicated backgrounds and uneven lighting conditions of industrial fields. Required to measure object dimensions, the preprocessing of camera calibration must be able to extract calibration points from a calibration pattern. However, industrial fields for visual inspection rarely provide the proper lighting conditions for camera calibration of a measurement system. In this paper, a probabilistic criterion is proposed to detect a local set of calibration points, which would guide the extraction of other calibration points in a cluttered background under irregular lighting conditions. If only a local part of the calibration pattern can be seen, input data can be extracted for camera calibration. In an experiment using real images, we verified that the method can be applied to camera calibration for poor quality images obtained under uneven illumination and cluttered background.
Journal of information and communication convergence engineering
/
제13권3호
/
pp.197-204
/
2015
In this paper, we present an algorithm for the detection of illegally parked vehicles based on a combination of some image processing algorithms. A digital camera is fixed in the illegal parking region to capture the video frames. An adaptive Gaussian mixture model (GMM) is used for background subtraction in a complex environment to identify the regions of moving objects in our test video. Stationary objects are detected by using the pixel-level features in time sequences. A stationary vehicle is detected by using the local features of the object, and thus, information about illegally parked vehicles is successfully obtained. An automatic alarm system can be utilized according to the different regulations of different illegal parking regions. The results of this study obtained using a test video sequence of a real-time traffic scene show that the proposed method is effective.
본 연구에서는 탐지하고자 하는 표적신호를 초기 엔드멤버로 하여 Iterative Error Analysis를 통해 배경물질들의 반사 스펙트럼을 순차적으로 엔드멤버로 추출하고, 추출된 엔드멤버들을 이용하여 분광 혼합분석함으로써 표적물질의 분포를 탐지하는 새로운 초분광 표적탐지 기법을 제안한다. 제안된 기법에서는 표적물질에 대한 점유율의 변화가 주어진 문턱값보다 작아질 때 엔드멤버 추출을 위한 반복을 멈추게 된다. 이 기법은 Orthogonal Subspace Projection과 같은 모델 기반 표적 탐지기법들과 달리 사전에 엔드멤버들을 확보해야 할 필요가 없으며, Matched Filter와 같은 확률론적 표적 탐지 기법들과 달리 배경 전체를 하나의 신호로 특징화하지 않기 때문에 표적의 희소성 여부에 의한 영향을 받지 않는다는 장점을 가지고 있다. 실제 항공 초분광 영상자료 및 다양한 인공 표적물질들이 삽입된 모의 초분광 영상자료를 이용한 실험 결과, 제안된 방법이 희소 및 비 희소 표적의 탐지에 매우 효과적임이 확인되었다. 제안된 방법은 표적 물체 탐지뿐만 아니라 광물, 오염물질 등 자원 및 환경 분야에서 다양한 피복 물질을 탐지하는데 효과적으로 사용될 수 있을 것으로 기대된다.
배경제거는 동영상의 내용을 자동으로 분석하기 위한 매우 중요한 기술의 하나로 움직이는 객체를 검출하고 추적하기 위한 핵심 기술이다. 본 논문에서는 배경 모델과 함께 배경 영상을 제공하는 새로운 샘플링 기반의 배경제거 알고리즘을 제안한다. 제안된 방법에서는 움직임이 빠른 객체와 느린 객체를 동시에 처리하기 위해 다중 구간 샘플링 기법을 이용하여 배경 모델을 생성한다. 이러한 다중 구간 배경 모델들로부터 최선의 배경 모델을 만들기 위해 "신뢰도"를 사용한 것이 본 논문의 특징이다. 배경 제거 분야에서 다양한 모델을 병합하여 하나의 모델을 만들기 위해 신뢰도를 정의하여 사용한 경우는 현재까지 보고되지 않았다. 실험을 통해 제안된 방법이 다양한 속도의 객체가 존재하고 시간에 따른 그림자의 이동과 같은 환경 변화가 있는 응용에서도 안정적인 결과를 나타내는 것을 알 수 있었다.
This paper presents the area classification, identification, and tracking for multiple moving objects with the similar colors. To do this, first, we use the GMM(Gaussian Mixture Model)-based background modeling method to detect the moving objects. Second, we propose the use of the binary and morphology of image in order to eliminate the shadow and noise in case of detection of the moving object. Third, we recognize ROI(region of interest) of the moving object through labeling method. And, we propose the area classification method to remove the background from the detected moving objects and the novel method for identifying the classified moving area. Also, we propose the method for tracking the identified moving object using Kalman filter. To the end, we propose the effective tracking method when detecting the multiple objects with the similar colors. Finally, we demonstrate the feasibility and applicability of the proposed algorithms through some experiments.
증강현실기술을 사용하는 증강현실 게임이 늘어남에 따라 사용자들의 요구도 많아지고 있다. 증강현실 게임에서 사용되는 게임 기술에는 MARKER, MARKERLESS, GPS등을 활용한 게임이 주를 이루고 있다. 이러한 기술을 활용한 게임은 배경과 다른 오브젝트를 증강할 수가 있다. 이 문제를 해결하기 위해 증강현실의 중요한 요소인 배경에서 객체를 분석하여 증강현실 게임을 개발하는데 도움을 주고자 한다. 증강현실 게임에서 배경을 분석하기 위해 UNITY엔진에서 TensorFlow Lite를 활용하여 딥러닝 모델을 적용하여 배경 객체를 분석하였다. 이 결과를 활용하여 배경에서 분석된 객체의 종류에 맞춰 게임에 증강되는 오브젝트를 배치 할 수 있다는 결과를 얻었다. 이 연구를 활용하여 배경에 맞는 오브젝트를 증강하여 향상된 증강현실 게임을 개발 할 수 있을 것이다.
In most vision applications, we are frequently confronted with determining the position of object continuously. Generally, intertwined processes ire needed for target tracking, composed with tracking and control process. Each of these processes can be studied independently. In case of actual implementation we must consider the interaction between them to achieve robust performance. In this paper, the robust real time visual tracking in complex background is considered. A common approach to increase robustness of a tracking system is to use known geometric models (CAD model etc.) or to attach the marker. In case an object has arbitrary shape or it is difficult to attach the marker to object, we present a method to track the target easily as we set up the color and shape for a part of object previously. Robust detection can be achieved by integrating voting-based visual cues. Kalman filter is used to estimate the motion of moving object in 3D space, and this algorithm is tested in a pan/tilt robot system. Experimental results show that fusion of cues and motion estimation in a tracking system has a robust performance.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.