• 제목/요약/키워드: Background object detection

검색결과 332건 처리시간 0.031초

이동 객체 검출을 통한 승객 인원 개수에 대한 연구 (A study on counting number of passengers by moving object detection)

  • 유상현
    • 인터넷정보학회논문지
    • /
    • 제21권2호
    • /
    • pp.9-18
    • /
    • 2020
  • 영상 처리 기법을 이용한 영상 인식 분야는 버스 승차 및 하차 시에 승객을 움직이는 객체로 검출하고 개수하는 방법이 연구되고 있다. 이러한 기술 중에는 인공지능 기법의 하나인 딥러닝 기법이 사용되고 있다. 또 다른 방법으로 스테레오 비전 카메라를 이용하여 객체를 검출하는 방법도 사용되고 있다. 그러나 이러한 방법들은 객체를 검출할 때 사용되는 장비의 연산량이 많이 들어 고가의 하드웨어 장비가 필요하다. 그러나 대중교통 중 하나인 버스 승객을 검출하기 위해 상대적으로 연산량이 적은 기법을 이용하여 다양한 장비에 맞는 영상 처리 기술이 필요하다. 이에 본 논문에서는 다양한 장비에 맞는 이동 객체 검출 기법 중 배경 제거를 통한 객체의 윤곽선을 검출하여 대중교통 중의 하나인 버스에 탑승객의 수를 효율적으로 획득 할 수 있는 기법을 제안한다. 실험 결과 스테레오 비전을 장착한 장비보다 더 저사양의 장비에서 약 70%의 정확도로 승객을 개수하였다.

적외선 파장대에서의 물체의 겉보기온도 예측 (Prediction of the Apparent Temperature of an Object under the Infrared Waveband)

  • 정진수;고상근;유호선
    • 대한기계학회논문집B
    • /
    • 제23권3호
    • /
    • pp.352-363
    • /
    • 1999
  • Target detection by the infrared imager depends on the apparent temperature difference between the target and the background, so it is essential to predict apparent temperature variations for this purpose. In this study, thermal analysis program Including conduction, convection and radiation is developed and applied to a representative geometry adequate for examining the apparent temperature characteristics. The results show that the longwave emissivity in association with the background temperature affects the apparent temperature strongly but does not affect the physical temperature. It is revealed that the background temperature plays a role of tuning the apparent temperature. As the longwave emissivity decreases, the apparent temperature decreases when the target is hotter than the background, whereas it increases in the reversed situation. These findings imply that an effective surface treatment, such as painting of a less emissive material, may provide a less detection probability and contribute to preventing the target from being detected at night.

효과적인 다봉 배경 모델링 및 물체 검출 (Efficient Multimodal Background Modeling and Motion Defection)

  • 박대용;변혜란
    • 한국정보과학회논문지:컴퓨팅의 실제 및 레터
    • /
    • 제15권6호
    • /
    • pp.459-463
    • /
    • 2009
  • 배경 모델링 및 물체 검출 기술은 실시간 비디오 처리 기술에서 중요한 부분을 차지하고 있다. 그동안 많은 연구들이 진행되었지만 안정적인 성능을 위해서는 아직도 상당한 계산량을 요구한다. 이 때문에 고해상도 영상 처리나 객체 추적, 행동 분석 및 대상 인식 등의 알고리즘과 함께 사용되는 경우, 실시간 처리에 어려움이 있다. 본 논문에서는 가장 일반적으로 쓰이는 배경 모델링 기법 중의 하나인 혼합정규모델(mixtures of Gaussian)을 근사화한 효과적인 다봉(multimodal) 배경 모델링 및 물체 검출 방법을 제안한다. 근사화의 타당성과 각 과정들을 유도 및 검증하였고, 실험을 통해 제안하는 알고리즘이 기존 방법의 안정성과 유연성을 유지하면서 3배 이상의 처리 속도를 나타냄을 보였다.

Detection of Calibration Patterns for Camera Calibration with Irregular Lighting and Complicated Backgrounds

  • Kang, Dong-Joong;Ha, Jong-Eun;Jeong, Mun-Ho
    • International Journal of Control, Automation, and Systems
    • /
    • 제6권5호
    • /
    • pp.746-754
    • /
    • 2008
  • This paper proposes a method to detect calibration patterns for accurate camera calibration under complicated backgrounds and uneven lighting conditions of industrial fields. Required to measure object dimensions, the preprocessing of camera calibration must be able to extract calibration points from a calibration pattern. However, industrial fields for visual inspection rarely provide the proper lighting conditions for camera calibration of a measurement system. In this paper, a probabilistic criterion is proposed to detect a local set of calibration points, which would guide the extraction of other calibration points in a cluttered background under irregular lighting conditions. If only a local part of the calibration pattern can be seen, input data can be extracted for camera calibration. In an experiment using real images, we verified that the method can be applied to camera calibration for poor quality images obtained under uneven illumination and cluttered background.

Detection and Recognition of Illegally Parked Vehicles Based on an Adaptive Gaussian Mixture Model and a Seed Fill Algorithm

  • Sarker, Md. Mostafa Kamal;Weihua, Cai;Song, Moon Kyou
    • Journal of information and communication convergence engineering
    • /
    • 제13권3호
    • /
    • pp.197-204
    • /
    • 2015
  • In this paper, we present an algorithm for the detection of illegally parked vehicles based on a combination of some image processing algorithms. A digital camera is fixed in the illegal parking region to capture the video frames. An adaptive Gaussian mixture model (GMM) is used for background subtraction in a complex environment to identify the regions of moving objects in our test video. Stationary objects are detected by using the pixel-level features in time sequences. A stationary vehicle is detected by using the local features of the object, and thus, information about illegally parked vehicles is successfully obtained. An automatic alarm system can be utilized according to the different regulations of different illegal parking regions. The results of this study obtained using a test video sequence of a real-time traffic scene show that the proposed method is effective.

Iterative Error Analysis 기반 분광혼합분석에 의한 초분광 영상의 표적물질 탐지 기법 (Hyperspectral Target Detection by Iterative Error Analysis based Spectral Unmixing)

  • 김광은
    • 대한원격탐사학회지
    • /
    • 제33권5_1호
    • /
    • pp.547-557
    • /
    • 2017
  • 본 연구에서는 탐지하고자 하는 표적신호를 초기 엔드멤버로 하여 Iterative Error Analysis를 통해 배경물질들의 반사 스펙트럼을 순차적으로 엔드멤버로 추출하고, 추출된 엔드멤버들을 이용하여 분광 혼합분석함으로써 표적물질의 분포를 탐지하는 새로운 초분광 표적탐지 기법을 제안한다. 제안된 기법에서는 표적물질에 대한 점유율의 변화가 주어진 문턱값보다 작아질 때 엔드멤버 추출을 위한 반복을 멈추게 된다. 이 기법은 Orthogonal Subspace Projection과 같은 모델 기반 표적 탐지기법들과 달리 사전에 엔드멤버들을 확보해야 할 필요가 없으며, Matched Filter와 같은 확률론적 표적 탐지 기법들과 달리 배경 전체를 하나의 신호로 특징화하지 않기 때문에 표적의 희소성 여부에 의한 영향을 받지 않는다는 장점을 가지고 있다. 실제 항공 초분광 영상자료 및 다양한 인공 표적물질들이 삽입된 모의 초분광 영상자료를 이용한 실험 결과, 제안된 방법이 희소 및 비 희소 표적의 탐지에 매우 효과적임이 확인되었다. 제안된 방법은 표적 물체 탐지뿐만 아니라 광물, 오염물질 등 자원 및 환경 분야에서 다양한 피복 물질을 탐지하는데 효과적으로 사용될 수 있을 것으로 기대된다.

다중 구간 샘플링에 기반한 배경제거 알고리즘 (Background Subtraction Algorithm Based on Multiple Interval Pixel Sampling)

  • 이동은;최영규
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제2권1호
    • /
    • pp.27-34
    • /
    • 2013
  • 배경제거는 동영상의 내용을 자동으로 분석하기 위한 매우 중요한 기술의 하나로 움직이는 객체를 검출하고 추적하기 위한 핵심 기술이다. 본 논문에서는 배경 모델과 함께 배경 영상을 제공하는 새로운 샘플링 기반의 배경제거 알고리즘을 제안한다. 제안된 방법에서는 움직임이 빠른 객체와 느린 객체를 동시에 처리하기 위해 다중 구간 샘플링 기법을 이용하여 배경 모델을 생성한다. 이러한 다중 구간 배경 모델들로부터 최선의 배경 모델을 만들기 위해 "신뢰도"를 사용한 것이 본 논문의 특징이다. 배경 제거 분야에서 다양한 모델을 병합하여 하나의 모델을 만들기 위해 신뢰도를 정의하여 사용한 경우는 현재까지 보고되지 않았다. 실험을 통해 제안된 방법이 다양한 속도의 객체가 존재하고 시간에 따른 그림자의 이동과 같은 환경 변화가 있는 응용에서도 안정적인 결과를 나타내는 것을 알 수 있었다.

유사한 색상을 지닌 다수의 이동 물체 영역 분류 및 식별과 추적 (Area Classification, Identification and Tracking for Multiple Moving Objects with the Similar Colors)

  • 이정식;주영훈
    • 전기학회논문지
    • /
    • 제65권3호
    • /
    • pp.477-486
    • /
    • 2016
  • This paper presents the area classification, identification, and tracking for multiple moving objects with the similar colors. To do this, first, we use the GMM(Gaussian Mixture Model)-based background modeling method to detect the moving objects. Second, we propose the use of the binary and morphology of image in order to eliminate the shadow and noise in case of detection of the moving object. Third, we recognize ROI(region of interest) of the moving object through labeling method. And, we propose the area classification method to remove the background from the detected moving objects and the novel method for identifying the classified moving area. Also, we propose the method for tracking the identified moving object using Kalman filter. To the end, we propose the effective tracking method when detecting the multiple objects with the similar colors. Finally, we demonstrate the feasibility and applicability of the proposed algorithms through some experiments.

증강현실 게임에서 딥러닝을 활용한 배경객체 분석에 관한 연구 (A Study on the Analysis of Background Object Using Deep Learning in Augmented Reality Game)

  • 김한호;이동열
    • 융합정보논문지
    • /
    • 제11권11호
    • /
    • pp.38-43
    • /
    • 2021
  • 증강현실기술을 사용하는 증강현실 게임이 늘어남에 따라 사용자들의 요구도 많아지고 있다. 증강현실 게임에서 사용되는 게임 기술에는 MARKER, MARKERLESS, GPS등을 활용한 게임이 주를 이루고 있다. 이러한 기술을 활용한 게임은 배경과 다른 오브젝트를 증강할 수가 있다. 이 문제를 해결하기 위해 증강현실의 중요한 요소인 배경에서 객체를 분석하여 증강현실 게임을 개발하는데 도움을 주고자 한다. 증강현실 게임에서 배경을 분석하기 위해 UNITY엔진에서 TensorFlow Lite를 활용하여 딥러닝 모델을 적용하여 배경 객체를 분석하였다. 이 결과를 활용하여 배경에서 분석된 객체의 종류에 맞춰 게임에 증강되는 오브젝트를 배치 할 수 있다는 결과를 얻었다. 이 연구를 활용하여 배경에 맞는 오브젝트를 증강하여 향상된 증강현실 게임을 개발 할 수 있을 것이다.

Pan/Tilt스테레오 카메라를 이용한 이동 물체의 강건한 시각추적 (Robust 3D visual tracking for moving object using pan/tilt stereo cameras)

  • 조지승;정병묵;최인수;노상현;임윤규
    • 한국정밀공학회지
    • /
    • 제22권9호
    • /
    • pp.77-84
    • /
    • 2005
  • In most vision applications, we are frequently confronted with determining the position of object continuously. Generally, intertwined processes ire needed for target tracking, composed with tracking and control process. Each of these processes can be studied independently. In case of actual implementation we must consider the interaction between them to achieve robust performance. In this paper, the robust real time visual tracking in complex background is considered. A common approach to increase robustness of a tracking system is to use known geometric models (CAD model etc.) or to attach the marker. In case an object has arbitrary shape or it is difficult to attach the marker to object, we present a method to track the target easily as we set up the color and shape for a part of object previously. Robust detection can be achieved by integrating voting-based visual cues. Kalman filter is used to estimate the motion of moving object in 3D space, and this algorithm is tested in a pan/tilt robot system. Experimental results show that fusion of cues and motion estimation in a tracking system has a robust performance.