• 제목/요약/키워드: Background noise level

Search Result 163, Processing Time 0.037 seconds

2D/3D image Conversion Method using Simplification of Level and Reduction of Noise for Optical Flow and Information of Edge (Optical flow의 레벨 간소화 및 노이즈 제거와 에지 정보를 이용한 2D/3D 변환 기법)

  • Han, Hyeon-Ho;Lee, Gang-Seong;Lee, Sang-Hun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.2
    • /
    • pp.827-833
    • /
    • 2012
  • In this paper, we propose an improved optical flow algorithm which reduces computational complexity as well as noise level. This algorithm reduces computational time by applying level simplification technique and removes noise by using eigenvectors of objects. Optical flow is one of the accurate algorithms used to generate depth information from two image frames using the vectors which track the motions of pixels. This technique, however, has disadvantage of taking very long computational time because of the pixel-based calculation and can cause some noise problems. The level simplifying technique is applied to reduce the computational time, and the noise is removed by applying optical flow only to the area of having eigenvector, then using the edge image to generate the depth information of background area. Three-dimensional images were created from two-dimensional images using the proposed method which generates the depth information first and then converts into three-dimensional image using the depth information and DIBR(Depth Image Based Rendering) technique. The error rate was obtained using the SSIM(Structural SIMilarity index).

A Laboratory Study on Low Frequency Noise Assessment based on Noise Acceptability Limit (소음 수응 한계를 고려한 저주파 소음평가에 대한 실험적 연구)

  • Hong, Seung-Ki;Kim, Jae-Hwan;Kim, Kyu-Tae;Lee, Soo-Gab
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.8
    • /
    • pp.736-740
    • /
    • 2007
  • A laboratory study on low frequency noise assessment has been carried out to evaluate the relevance of the weighting curve. Especially, the A-weighting curve which is used in most noise assessments has been evaluated using the acceptability limit in this study. The acceptability limit is one of the indicators in which the subjective responses were well-reflected. For the measurement of the acceptability limit, pure tone stimuli were used in the frequency range between 20 and 200 Hz. The measurement was proceeded in the anechoic chamber to minimize the background noise level. A total of 29 test subjects, who were aged between 19 to 33 years, participated in this study. They had been exposed to various stimuli for about 1 hour by supra-aural earphone. The measurement consisted of two listening sessions: hearing threshold and the acceptability limit session. The results showed that the tendency of the acceptability limit curve was approximately equal to C-weighting curve which had been found to be superior to A-weighting curve in assessment of low frequencies.

Effects of noise on coincidence detection in an optical system with entangled state photons (얽힘상태 광을 이용한 광학계에서 잡광이 동시계수에 미치는 영향)

  • 김헌오;고정훈;박구동;엄영호;김태수
    • Korean Journal of Optics and Photonics
    • /
    • v.12 no.4
    • /
    • pp.263-269
    • /
    • 2001
  • The influences of background and environmental noise on coincidence detection are investigated with entangled photons produced by parametric down-conversion process. When the down-converted photons are mixed with thermal light, the coincidence rate did not vary with increasing noise level because the accidental coincidences are discriminated at the short resolving time window. The entangled photon source and the coincidence technique can effectively be used for a noise-free communication channel in the new field of quantum information transmission and processing. ssing.

  • PDF

EEG Fast Beta Sub-band Power and Frontal Alpha Asymmetry under Cognitive Stress

  • Sohn, Jin-Hun;Park, Mi-Kyung;Park, Ji-Yeon;Lee, Kyung-Hwa
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 2001.05a
    • /
    • pp.225-230
    • /
    • 2001
  • Intensity of background noise is a factor significantly affecting both subjective evaluation of experienced stress level and associated electroencephalographic (EEG) responses during mental load in noisy environments. In the study on 27 subjects we analyzed the influence of the background white noise (WN) intensity on psychophysiological responses during a word recognition test. Electrocortical activity were recorded during baseline resting state and 40 s long performance on 3 similar Korean word recognition tests with different intensities of background WN (55, 70 and 85 dB).. An important finding in terms of physiological reactivity was similarity of all physiological response profiles between 55 and 70dB WN, i.e., none of physiological variables differentiated the two conditions, while 85dB WN resulted in a significantly different profile of reactions (higher fast beta power in EEG spectra). This condition was characterized by highest subjective rating of experienced stress, had more fast beta activity and had tendency of right hemisphere dominance, emphasizing the role of brain lateralization in negative affect control.

UNDERWATER NOISE GENERATED BY FISHING GEAR -Stern trawl net- (어구에서 발생되는 소음 -트로올 어구-)

  • YOON Gab Dong
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.12 no.4
    • /
    • pp.217-224
    • /
    • 1979
  • The main purpose of the present study is to measure the sound spectra of the underwater noises generated by moving trawl net. An underwater recording system was designed to detect underwater noise generated by moving trawl net. The acoustic analysis was made by a heterodyne analyzer (B & K 2010) and level recorder (B & K 2307). The noises generated by the trawl net are appreciably higher (about 10dB) than the background noise in the presence of the fishing vessel. The frequency distribution of underwater noise was DC-6,300 Hz and predominant frequency range was 100-200 Hz, and maximum sound pressure level was $137\;db(re\;1{\mu}Pa)$. Sound pressure level recorded at the ground rope was higher than that recorded at the head rope. The sound pressure level meosured in the course of hawling was higher than that measured in the course of towing. When tile net is being casted tile sound pressure level showed the lowest value.

  • PDF

Development of a Helicopter Rotor Test Rig and Measurement of Aeroacoustic Characteristics (헬리콥터 로터 시험장치의 개발 및 공력소음특성의 측정)

  • Rhee, Wook;Choi, Jong-Soo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.3
    • /
    • pp.10-16
    • /
    • 2004
  • In this paper the aeroacoustic characteristics of a helicopter main rotor system is measured by using a pair of scaled rotor blades. A low noise rotor test jig is developed for noise measurement and the rotational speed, thrust and torque are measured simultaneously in order to match the aerodynamic conditions with the full scale rotor. The accuracy of the force measurement device was checked through a calibration procedure. The measured thurst and torque with a 1.2m rotor are compared to the results of analytical prediction and showed that the thrust data at various rotational speed followed the prediction relatively well, but the torque data considered less accurate. It is also found that the background noise level of the test rig is sufficiently low, and the measured noise level from the rotor can be scaled with rotor tip speed. However, the Mach number dependancy and the directivity changes depend on the noise source characteristics.

Laver Farm Feature Extraction From Landsat ETM+ Using Independent Component Analysis

  • Han J. G.;Yeon Y. K.;Chi K. H.;Hwang J. H.
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.359-362
    • /
    • 2004
  • In multi-dimensional image, ICA-based feature extraction algorithm, which is proposed in this paper, is for the purpose of detecting target feature about pixel assumed as a linear mixed spectrum sphere, which is consisted of each different type of material object (target feature and background feature) in spectrum sphere of reflectance of each pixel. Landsat ETM+ satellite image is consisted of multi-dimensional data structure and, there is target feature, which is purposed to extract and various background image is mixed. In this paper, in order to eliminate background features (tidal flat, seawater and etc) around target feature (laver farm) effectively, pixel spectrum sphere of target feature is projected onto the orthogonal spectrum sphere of background feature. The rest amount of spectrum sphere of target feature in the pixel can be presumed to remove spectrum sphere of background feature. In order to make sure the excellence of feature extraction method based on ICA, which is proposed in this paper, laver farm feature extraction from Landsat ETM+ satellite image is applied. Also, In the side of feature extraction accuracy and the noise level, which is still remaining not to remove after feature extraction, we have conducted a comparing test with traditionally most popular method, maximum-likelihood. As a consequence, the proposed method from this paper can effectively eliminate background features around mixed spectrum sphere to extract target feature. So, we found that it had excellent detection efficiency.

  • PDF

Fuzzy Based Shadow Removal and Integrated Boundary Detection for Video Surveillance

  • Niranjil, Kumar A.;Sureshkumar, C.
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.6
    • /
    • pp.2126-2133
    • /
    • 2014
  • We present a scalable object tracking framework, which is capable of removing shadows and tracking the people. The framework consists of background subtraction, fuzzy based shadow removal and boundary tracking algorithm. This work proposes a general-purpose method that combines statistical assumptions with the object-level knowledge of moving objects, apparent objects, and shadows acquired in the processing of the previous frames. Pixels belonging to moving objects and shadows are processed differently in order to supply an object-based selective update. Experimental results demonstrate that the proposed method is able to track the object boundaries under significant shadows with noise and background clutter.

The Flow Noise Characteristics on Hydrophone Installation Method in the Cavitation Tunnel (캐비테이션 터널에서의 수중청음기 설치 방법에 따른 유동소음 특성)

  • J.W. Ahn;Y.H. Park;K.S. Kim;J.T. Lee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.39 no.1
    • /
    • pp.1-7
    • /
    • 2002
  • As the existing noise measuring device was affected the flow-field and structural vibration directly, new experimental device was required. Two Hydrophone Boxes are designed and their performances are investigated. The noise level of the KRISO cavitation tunnel is compared with those of the other cavitation tunnels which have been designed for the noise study. The present experimental results show the possibility of the full-scale prediction for propeller cavitation noise and the improvement of the measurement performance at the range of low-frequency.

Signal Recovery of the Corrupted Metal Impact Signal using the Adaptive Filtering in NPPs

  • Kim, Dai-Il;Shin, Won-Ky;Oh, Sung-Hun;Yun, Won-Young
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1995.10a
    • /
    • pp.223-229
    • /
    • 1995
  • Loose Par Monitoring System(LPMS) is one of the fundamental diagnostic tools installed in the nuclear power plants. In this paper, recovery process algorithm and model for the corrupted impact signal generated by loose parts is presented. The characteristics of this algorithm can obtain a proper burst signal even though background noise is considerably high level comparing with actual impact signal. To verify performance of the proposed algorithm, we evaluate mathematically signal-to-noise ratio of primary output and noise. The performance of this recovery process algorithm is shown through computer simulation.

  • PDF