• Title/Summary/Keyword: Background noise level

Search Result 163, Processing Time 0.036 seconds

Background Noise Classification in Noisy Speech of Short Time Duration Using Improved Speech Parameter (개량된 음성매개변수를 사용한 지속시간이 짧은 잡음음성 중의 배경잡음 분류)

  • Choi, Jae-Seung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.9
    • /
    • pp.1673-1678
    • /
    • 2016
  • In the area of the speech recognition processing, background noises are caused the incorrect response to the speech input, therefore the speech recognition rates are decreased by the background noises. Accordingly, a more high level noise processing techniques are required since these kinds of noise countermeasures are not simple. Therefore, this paper proposes an algorithm to distinguish between the stationary background noises or non-stationary background noises and the speech signal having short time duration in the noisy environments. The proposed algorithm uses the characteristic parameter of the improved speech signal as an important measure in order to distinguish different types of the background noises and the speech signals. Next, this algorithm estimates various kinds of the background noises using a multi-layer perceptron neural network. In this experiment, it was experimentally clear the estimation of the background noises and the speech signals.

Analysis on Indoor Noise Condition of Cafeteria in University Campus (대학교 학생식당의 소음저감을 위한 실내소음 실태분석)

  • Choi, Yoon-Jung;Lee, Seon-A;Kim, Hye-Kyeong
    • Proceedings of the Korean Institute of Interior Design Conference
    • /
    • 2007.05a
    • /
    • pp.85-88
    • /
    • 2007
  • This research is a case study for improving the sound environmental quality of cafeteria in university campus. The purpose of the study is to investigate the present condition of physical level, type, and source of indoor noise by comparison with a restaurant near campus. Methods were field survey with measurement on equivalent and instant noise level and observation on noise type, and questionnaire survey to 60 students users. Surveys were carried out in the 8th and the 14th of December 2005. The results are as follows. 1) Indoor noise levels of the cafeteria were measured as $67.2{\sim}76.6$(average 73.3) dB(A)Leq5min and $60.3{\sim}90.5$(average 71.2) dB(A), but noise levels of the restaurant were $61.6{\sim}70.4$(average 66.9) dB(A)Leq5min and $59.8{\sim}70.6$(average 64.9) dB(A). 2) The users's responses on major noise type were 'noise by handling equipment and tableware', 'noise by moving chairs', and 'taking noise' in cafeteria, but 'taking noise' and 'background music' in restaurant. 3) It was found that the differences of indoor noise condition between with 2 subjects were caused by finishing materials, kitchen division type, and furniture type.

  • PDF

Railroad Noise and its Impact (철도소음과 그 영향)

  • 강대준
    • Journal of KSNVE
    • /
    • v.7 no.5
    • /
    • pp.827-836
    • /
    • 1997
  • To suggest the standard of railroad noise and its measures and grasp its status 15 open sites of the Jungang. Taeback and Youngdong line in which the background noise level is very low and the railroad is at grade and 7 urban sites of the Kyungboo and Honam line were selected and the sound level which 373 trains passing through the former and 271 trains passing through the latter emitted was investigated. The community response of railroad noise was surveyed for apartment near wayside. Noise reduction of wall for apartment at the wayside was investigated. The prediction of electric train subway noise is derived for the environment impact assessment.

  • PDF

The Effect of Antenna Pattern Measurement According to Radio Wave Environment on Data Quality of HF Ocean Radar (전파환경에 따른 안테나패턴 측정(APM) 결과가 고주파 해양레이더의 자료 품질에 미치는 영향)

  • Jae Yeob, Kim;Dawoon, Jung;Seok, Lee;Kyu-Min, Song
    • Ocean and Polar Research
    • /
    • v.44 no.4
    • /
    • pp.287-296
    • /
    • 2022
  • High-frequency (HF) radar measures sea surface currents from the radio waves transmitted and received by antenna on land. Since the data quality of HF radar measurements sensitively depend on the radio wave environment around antenna, Antenna Pattern Measurements (APM) plays an important role in evaluating the accuracy of measured surface currents. In this study, APM was performed by selecting the times when the background noise level around antenna was high and low, and radial data were generated by applying the ideal pattern and measured pattern. The measured antenna pattern for each case was verified with the current velocity data collected by drifters. The radial velocity to which the ideal pattern was applied was not affected by the background noise level around antenna. However, the radial velocity obtained with APM in the period of high background noise was significantly lower in quality than the radial velocity in a low noise environment. It is recomended that APM be carried out in consideration of the radio wave environment around antenna, and that the applied result be compared and verified with the current velocity measurements by drifters. If it is difficult to re-measure APM, we suggest using radial velocity in generating total vector with the ideal pattern through comparative verification, rather than poorly measured patterns, for better data quality.

Improvement of Floor Impact Noise Measurement and Method for Rating Floor Impact Noise Isolation Performance (바닥충격음 측정 및 차음 평가의 방향)

  • Jeong, Jeong-Ho;Jeong, Yeong;Seo, Sang-Ho;Song, Hee-Soo;Jeon, Jin-Yong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.269-274
    • /
    • 2004
  • The aims of this study were to Investigate the floor impact noise isolation performance of floating floor with isolation materials and propose the improvement direction of floor impact noise measurement method and evaluation classes using impact ball. Reduction of light-weight impact sound pressure level can be achieved by the finishing materials, such as vinyl finishing material and wooden flooring with isolation materials. Floor impact noise Isolation material which satisfy the properties of the floor impact noise isolation materials cause resonance in the low frequency band and worsen heavy-weight impact sound pressure level. Heavy-weight impact sound level can be reduced by using noise reduction flooring, ceiling and increase of slab thickness. Strong impact force in low frequency bang below 63Hz of bang machine is not similar to human impact source and causes some problem in evaluating heavy-weight impact noise but heavy-weight impact noise measurement and evolution using impact ball which is very similar to human impact is more reliable than bang machine. Correction value on the background noise and sensitivity of residents should be considered on the floor impact noise evaluation classes.

  • PDF

A Case Study on Noise Reduction Effect of Two-layer Porous Asphalt Pavement in an Urban Area (도심지 내 복층 저소음포장 설치에 따른 소음저감 사례연구)

  • Jung, Jong-Seo;Sohn, Jeong-Rak;Lee, Soo-Hyoung;Yang, Hong-Seok
    • International Journal of Highway Engineering
    • /
    • v.18 no.5
    • /
    • pp.49-56
    • /
    • 2016
  • PURPOSES : In this study, noise reduction effect of a two-layer porous asphalt pavement was investigated through site measurement and computer simulation. METHODS : To examine noise reduction effect, a 3 km long quiet pavement was installed by removing previous normal pavement, which had a rather low porosity. The studied site was a high-rise apartment building surrounded by the quiet pavement and Seoul ring road with heavy traffic volume, indicating relatively high background noise. RESULTS : The measurement result before and after installing the quiet pavement showed a noise reduction effect of 4.3 dB(A) at a distance of 7.5 m from the road. After validating the accuracy of simulation using SoundPLAN, the reduction in SPL(sound pressure level) at the facades by the quiet pavement was predicted by considering five different road conditions generating traffic noise from each road or in the combination of the quiet pavement and Seoul ring road. In the case of no noise from Seoul ring road, noise reduction at the facades was 4.2 dB(A) on average for 702 housing units. With background noise from Seoul ring road, however, the average SPL decreased to 2.0 dB(A). Regarding subjective response of noise, the number of housing units with a noise reduction of over 3 dB(A) was 229 out of 706 units (approximately 32%). For 77 housing units, the noise reduction was between 1~3 dB(A), while it was less than 1 dB(A) for 400 housing units. CONCLUSIONS : The overall result indicates that the quiet pavement is useful to reduce noise evenly at low and high floors compared to noise barriers, especially in the urban situation where background noise is low.

Evaluation of Elevator Noise level of Apartment Houses through Vibration Measurement (진동측정을 통한 공동주택 엘리베이터 소음 레벨 평가)

  • Kang, Min-Woo;Song, Min-Jeong;Oh, Yang-Ki
    • Journal of Korean Institute of Architectural Sustainable Environment and Building Systems
    • /
    • v.12 no.6
    • /
    • pp.641-654
    • /
    • 2018
  • Elevator noise in apartment houses is one of the factors which prevent the residents from quiet and comfortable life. The elevator noise measurement method [KS F ISO 16032] is introduced from the matching ISO standard, however, it has problems in the application to the actual measurement. To visualize the problems, measurements in an apartment house are conducted, which has been suffering from the elevator noise for a long time. The measurement itself is extremely difficult due to the low sound pressure level of elevator, which is lower than 35 dB (A), and the even higher background noise level. However the vibration levels measured at the same time are relatively less disturbing As a result of vibration measurement, it was found that the vibration is clearly measured on the wall, and presents a high correlation coefficient of over 0.8 with the noise levels measured This shows that the vibration level measured on the elevator walls may be rather reliable numbers than the elevator noise levels in the actual noisy condition of elevator halls and the vicinity.

Establishing Evaluation Modifiers for the Annoyance Responses to Heavyweight Impact Noise (Annoyance 반응에 의한 중량충격음 평가척도 구성)

  • Kim, Kyoung-Ho;Jeong, Jeong-Ho;Jeon, Jin-Yong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.917-917
    • /
    • 2003
  • The auditory experiments based on the subjective annoyance responses were undertaken for the establishment of the adverb modifiers of the heavy-weight impact noises. The standard heavy weight impact noise, impact ball noise and adult walking noise were recorded by dummy head at a newly-built apartment and were presented to the subjects by headphones. The levels of the three impact noises were varied from 30 to 60㏈(A) and the subjects matched one of the adverb modifiers to each level of the noise sources. As a result, seven scale modifiers were established and the intervals between the modifiers were found as equal. In addition, it was found that the lower annoyance noise limits for the heavyweight impact, impact ball and walking were 40-45㏈ (L$\sub$I, Fmax. AW), which is 6㏈ lower than in the previous study. The background noise level was as low as 21㏈(A) in the test booth, therefore, the testing conditions need to be concerned for evaluation of floor impact noise.

  • PDF

The Underwater Noise of Fishing Gears in Operation (망어구의 수중소음에 관한 연구)

  • 윤갑동
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.16 no.1
    • /
    • pp.1-15
    • /
    • 1980
  • An underwater recording system was designed to measure the sound spectra of the underwater noises produced by fishing gears in operation. Recorded were noi~es from three types of fishing gears: an anchovy set net, three anchovy boat seine net and a stern trawlnet. Acoustic analysis were made using a heterodyne analyzer, a digital frequency analyzer and a level recorder. The no;'e produced by the anchovy set net was found in the high frequency region of the onset of ambient noise spectrum with a slope of - 6 dB/octave. Here the ambient noise spectrum is higher, though similar in shape, than Knudsen spectrum, and is attributed to the breaking action of the coastal wave. Measured noise spectra during the fishing operations of the anchovy boat seine nets are attributed to the background noise of the sea in the presence of the fishing vessels. The frequency distribution of the noise was 20~5, 000 Hz in the case of two steel anchovy boat seiners, and 20-3,000 Hz in the case of the wooden anchovy boat seiner. The predominant frequency range was 250~350 Hz and maximum sound pressure level was 122 dB (re $1\muPa$) in the case of the steel boat and ] 17 dB in the case of the wooden boat. The noises produced by the trawl fishing gears are remarkably higher than the background noi~e in the presence of the fishing vessel. The frequency distribution of the noi~e was 20-6,300 Hz. The predominant frequency range was 100~200 Hz and maximum sound pressure level was 137 dB ( re $1\muPa$) . The noise spectra were not so much different from that caused by vibrations of the towing cable and the structure of the ground rope of the trawl net towed in an experimental tank.

  • PDF

A Case Study for Analysis on Present Condition and Cause of Indoor Noise in University Cafeteria (대학교 학생식당의 실내소음 실태 및 원인 분석 사례연구)

  • Choi, Yoon-Jung;Lee, Seon-A;Kim, Hye-Kyeong
    • Journal of the Korean housing association
    • /
    • v.18 no.5
    • /
    • pp.85-91
    • /
    • 2007
  • This is a case study for improving the sound environmental quality of cafeteria in university campus. The purpose of the study is to find out the present condition of physical level, type, and cause of indoor noise of cafeteria in university campus by comparison with a restaurant near campus. Research methods were field survey and questionnaire survey. Field survey was consisted of measurement on equivalent and instant noise level and observation on noise type. Respondents of questionnaire survey were 60 students using subject cafeteria or restaurant. Surveys were carried out in the 8th and in the 14th of December 2005. The results are as follows. 1) Indoor noise levels of the cafeteria were measured as $67.2{\sim}76.6$ (average 73.3) dB(A)Leq5min and $60.3{\sim}90.5$ (average 71.2) dB (A), exceeded the indoor noise recommended value of ASHRAE (American Society of Heating, Refrigerating and Air Conditioning Engineers). But noise levels of the restaurant were $61.6{\sim}70.4$ (average 66.9) dB(A)Leq5min and $59.8{\sim}70.6$ (average 64.9) dB(A). 2) The users's responses on major noise type in the cafeteria were 'noise by handling equipment and tableware', 'noise by moving chairs', and 'talcing noise', but 'taking noise' and 'background music' in the restaurant. 3) It was found that indoor noise level of the cafeteria was caused by sound reflection of finishing materials, noise diffusion by open type kitchen, and dragging noise of movable furniture.