• Title/Summary/Keyword: Background noise level

Search Result 163, Processing Time 0.031 seconds

A Study on the Frequency Analyzing of Leak Evaluation m Valve for Power Plant Using AE (AE법에 의한 발전용 밸브누설평가를 위한 주파수분석 연구)

  • LEE SANG-GUK
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.360-364
    • /
    • 2004
  • The objective of this study is to estimate the feasibility of acoustic emission method Jar the internal leak from the valves in nuclear power plants. The acoustic emission method was applied to the valves at the site, and the background noise was measured for the abnormal plant condition. From the comparison of background noise data with the experimental results as to relation between leak flow and acoustic signal, the minimum leak flow rates that am be detected by acoustic signal was suggested. When the background noise level are higher than the acoustic signal, the method described below was considered that the analysis the remainder among the background noise frequency spectrum and the acoustic signal spectrum.

  • PDF

Effect of diurnal variation of background seismic noise level on earthquake detectability (지진관측소 배경잡음 수준의 일변화가 지진 관측 능력에 미치는 영향)

  • Sheen, Dong-Hoon;Shin, Jin-Soo
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.54-59
    • /
    • 2009
  • Seismic station of high noise level has difficulties detecting relatively weak ground motions due to small earthquakes or teleseismic events because earthquake detectability of seismic station depends on seismic noise level. To figure out the capability of earthquake detection of a seismic network, therefore, seismic noise level of each station also needs to be considered, including the distribution of seismic stations. Recently, it has been known that most of broadband seismic stations in South Korea have affected by cultural noise in the frequencies higher than 1 Hz and show diurnal variations of noise level. In order to analyze the effect of diurnal variation of seismic noise level on earthquake detectability, we used the result of background seismic noise level analysis of seismograms of 30 broadband stations of KIGAM and KMA from 2005 to 2007. This study shows that earthquakes greater than magnitude 2.4 occurring within the Korean Peninsula can be detected at night while those greater than magnitude 2.6 can be detected in the daytime.

  • PDF

Estimation of Noise Level in Complex Textured Images and Monte Carlo-Rendered Images

  • Kim, I-Gil
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.1
    • /
    • pp.381-394
    • /
    • 2016
  • The several noise level estimation algorithms that have been developed for use in image processing and computer graphics generally exhibit good performance. However, there are certain special types of noisy images that such algorithms are not suitable for. It is particularly still a challenge to use the algorithms to estimate the noise levels of complex textured photographic images because of the inhomogeneity of the original scenes. Similarly, it is difficult to apply most conventional noise level estimation algorithms to images rendered by the Monte Carlo (MC) method owing to the spatial variation of the noise in such images. This paper proposes a novel noise level estimation method based on histogram modification, and which can be used for more accurate estimation of the noise levels in both complex textured images and MC-rendered images. The proposed method has good performance, is simple to implement, and can be efficiently used in various image-based and graphic applications ranging from smartphone camera noise removal to game background rendition.

THEORY OF BACKGROUND NOISE CANCELLATION ON PREDICTION OF RESPONSE PROBABILITY DISTRIBUTION FOR AN ARBITRARY SOUND WALL SYSTEM AND ITS APPLICATION TO ACTUAL SOUND WALL SYSTEMS

  • Ohta, M.;Takaki, N.
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1994.06a
    • /
    • pp.740-745
    • /
    • 1994
  • In the actual situation of measuring the environmental noise, it is very often that only the resultant phenomenon fluctuation contaminated by the additional noise of arbitrary distribution type can be observed. Furthermore, the observed data is usually given in a sound level form the purpose of estimating only the undisturbed objective output response, some estimation method is necessary to reasonably remove the effect of the above additional noise. In this paper, first, a mathematical model of arbitrary sound insulation systems is introduced in the form of a linear system on intensity scale, by using the well-known additive property of energy quantities. Next, some estimation method of the output response under the existence of background noise is derived. Then, based on the expression of the above estimation method, a new prediction method of only the output response probability function form for arbitrary sound insulation systems without. a background noise is proposed by use of observed data contaminated by a background noise. Finally, the effectiveness of the proposed method is confirmed experimentally too by applying it to the actual various type sound wall systems.

  • PDF

The role background noise intensity on Physiological activity during performance of mental task (인지과제 수행시 배경 소음의 크기에 따른 생리적 반응차)

  • Sohn Jin-Hun;Sokhadze Estate M.;Min Yoon-Ki;Lee Kyung-Hwa;Choi Sangsup
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • spring
    • /
    • pp.269-273
    • /
    • 1999
  • Combination of mental stress task with noise background is a traditional tool employed in psychophysiology. However, intensity of background noise is a factor affecting both performance on test and psychophysiological responses associated with stress evoked by mental load in noisy environment. In the current study on 7 subjects we analyzed the influence of white noise (WN) intensity (55, 70, and 85 dB[A] ) on psychophysiological responses during word recognition test performed on noise background. There were recorded following physiological variables: electrodermal activity (EDA) , namely, skin conductance level (SCL), skin conductance response (SCR) amplitude (SCR-A), rise time and total number of SCRs (N-SCR); cardiovascular activity, e.g., heart rate (HR), respiratory sinus arrhythmia (RSA) index, pulse transit time (PTT), finger pulse volume (PV), skin temperature (SKT) and respiratory activity, such as respiration rate (RESP-R) and inspiration wane amplitude (RESP-A) during baseline resting state and 40 s long performance on 3 similar Korean word recognition tests with different WN intensity (55, 70, and 85 dB). Electrodermal responses (SCR-A, SCL, N-SCR) demonstrated gradual increment with increased intensity of noise, and this increase of response magnitude with higher intensity of noise was typical also for r skin temperature (phasic SKT decrease) and pulse volume (phasic and tonic PV decrease). However, some cardiovascular and respiratory responses did not exhibit same tendency of gradual increase of reactivity , namely HR, as well as RESP-R and RESP-A showed decrement of response magnitudes. Important finding in terms of cardiovascular reactivity was that 55 and 70dB evoked similar profiles, while 85dB WN resulted in significantly different profile of reactions, suggesting that there exists a threshold level after which intensive auditory stimulation elicits psychophyslological responses pattern of different quality. There are discussed potential autonomic mechanism involved in mediation of observed physiological responses.

  • PDF

The Acoustic Characteristics of KRISO Cavitation Tunnel for Measurement of Underwater Noise (수중소음 계측을 위한 KRISO 캐비테이션 터널의 음향학적 특성)

  • J.W. Ahn;K.S. Kim;J.T. Lee;J.S. Kim;S.Y. Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.37 no.1
    • /
    • pp.111-117
    • /
    • 2000
  • In the KRISO cavitation tunnel, the acoustic characteristics for the measurement of underwater noise are investigated, The background noise is measured and analyzed up to 100kHz at various test conditions. The noise level of the KRISO cavitation tunnel is compared with those of the other cavitation tunnels which have been designed for the noise study[HYKAT(Germany), GTH(France), etc.]. In order to investigate the background noise source. the coherence between structural vibration and noise level is analyzed using the B&K 3550 FFT analyzer. The experimental results show the possibility of the noise study and suggest the improvement plan.

  • PDF

An Effective Selection of white Gaussian Noise Sub-band using Singular Value Decomposition (특이값 분해를 이용한 효율적인 백색가우시안 잡음대역 선정 방법)

  • Shin, Seung-Min;Kim, Young-Soo;Kim, Sang-Tae;Suk, Mi-Kyung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.3A
    • /
    • pp.272-280
    • /
    • 2009
  • Measurement of the background radio noise is very important process being used in survey of radio noise environment, calculating the threshold level for the frequency occupancy measurement and so forth. First step of background radio noise measurement is to select the sample sub-band which is mostly dominated by the background white Gaussian noise (WGN) within the target band. The second step is to carry out the main measurement of radio noise on this selected sample sub-band for the representative value of the noise power. In this paper, a method for selection of sample sub-band for the effective background radio noise measurement using SVD is proposed under the assumption that background radio noise is WGN. The performance of the proposed method is compared with that of the APD method which is widely used for the same purpose. Simulation results are shown to demonstrate the high performance of the proposed method in comparison with the existing APD method.

Investigation of the Acoustic Performance of Lower Grade Elementary School Classrooms (초등학교 저학년 교실의 실내음향성능 실태조사)

  • Jo, A-Hyeon;Park, Chan-Jae;Haan, Chan-Hoon
    • Journal of the Korean Institute of Educational Facilities
    • /
    • v.28 no.3
    • /
    • pp.3-14
    • /
    • 2021
  • Speech information of teachers is transmitted to students in classrooms so that appropriate aural environment should be provided for academic purposes. Many researches have been undertaken for classroom acoustics, and acoustic standards of domestic classrooms were suggested based on the reverberation time and background noise level. However, these standards are suitable for middle and high schools and so not consider the auditory ability by ages. As a precedent research, the present study was begun to suggest an acoustic standard for lower grade elementary school classrooms with children under age 9 who have not normal auditory ability. In order to do this, acoustic performances of the lower grade classrooms were measured and compared with the general classrooms. Also, change of acoustic parameters depending on the desk layout was measured and analyzed. The measured acoustic parameters were background noise, signal to noise ratio, RT, STI, D50, and IACC. As a result, it was found that background noise is exceed the standard of 35dB(A) at the schools along the road sides. Also, it was shown that most of acoustic parameters are higher in the classrooms built recently rather than the old classrooms. Generally, there are not much difference of acoustic parameters among the various desk layouts but, better acoustic performances are acquired at the center line and the seats near sound source. Also, Higher IACC was measured at the seats on the center line facing the source squarely.

Effect of amplitude modulation in wind turbine noise on noise perception and annoyance (풍력 발전기 소음의 진폭변조가 소음 인지와 불쾌감에 미치는 영향)

  • Lee, Seung-Hoon;Kim, Kyu-Tae;Lee, Soo-Gab
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.491-491
    • /
    • 2009
  • Wind turbines produce aerodynamic noise which fluctuate periodically at a blade passing frequency. This sound characteristic is called amplitude modulation, or swishing sound. Several previous studies claimed that this amplitude modulation has a possibility to increase noise annoyance. Thus, this study performed a listening test to find the relationship between the amplitude modulation in wind turbine noise on noise annoyance. The stimuli for the listening test was recorded from a 1.5MW wind turbine in Jeju island. The result of the listening test shows that the amplitude modulation in wind turbine noise significantly increase noise annoyance. Moreover, this study analytically examined the effect of amplitude modulation on noise perception. The result indicates that amplitude modulated sound can be easily perceived even though the background noise level is higher than the sound level of the signal.

  • PDF

The Survey for the Maximum Noise Level of Portable Audio Equipments and Its Assessment (휴대용 음향기기 소음실태 및 소음도 평가)

  • Lee, Jaewon;Gu, J.H.;Park, H.G.;Lee, W.S.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.1
    • /
    • pp.3-8
    • /
    • 2013
  • Recently, the impact on hearing induced by using of portable audio equipment have been actively studied. In general, Because they turn the volume up with loud background noise, they may expose to louder noise. In this study, we investigated the maximum noise level of 20 the domestic potable audio equipment and estimated the impact of the hearing induced by portable audio equipment in according to exposure time. As a result, the use of portable audio equipment is assumed to be more three hours when the level of more than 50 % of volume is most likely to affect the hearing.