• Title/Summary/Keyword: Background Surface Reflectance

Search Result 16, Processing Time 0.02 seconds

Retrieval of background surface reflectance with pre-running BRD components

  • Choi, Sungwon;Lee, Chang Suk;Seo, Minji;Seong, Noh-hun;Lee, Kyeong-Sang;Han, Kyung-Soo
    • Korean Journal of Remote Sensing
    • /
    • v.32 no.1
    • /
    • pp.61-65
    • /
    • 2016
  • Importance of remote sensing for surface is increased than past. So many countries try to many ways to retrieve surface reflectance. In this study, we study a Bidirectional Reflectance Distribution Function (BRDF) to retrieve surface reflectance. We apply BRDF using observed surface reflectance of SPOT/VEGETATION (VGT-S1) and angular data to get Bidirectional Reflectance Distribution (BRD) coefficients for calculating scattering. And then we apply BRDF in the opposite direction with BRD coefficients and angular data to retrieve Background Surface Reflectance (BSR). The range of BSR is not over $0.4{\mu}m$ (blue), $0.45{\mu}m$ (red), $0.55{\mu}m$ (NIR). And for validation we compare BSR with VGT-S1, there are bias is from 0.0116 to 0.0158 and RMSE is from 0.0459 to 0.0545. As a result, we confirm that BSR is similar to VGT-S1.

Estimation of Surface Reflectance by Utilizing Single Visible Reflectance from COMS Meteorological Imager - Analysis of BAOD correction effect - (천리안위성 기상 탑재체의 가시 채널 관측을 이용한 지표면 반사도 산출 - 배경광학두께 보정의 효과 분석 -)

  • Kim, Mijin;Kim, Jhoon;Yoon, Jongmin
    • Korean Journal of Remote Sensing
    • /
    • v.30 no.5
    • /
    • pp.627-639
    • /
    • 2014
  • Accurate correction of surface effect from back scattered solar radiance is one of key issue to retrieve aerosol information from satellite measurements. In this study, two different methods are applied to retrieve surface reflectance by using single visible channel measurement from meteorological imager onboard COMS. The first one is minimum reflectance method, which composes the minimum value among previously measured reflectances at each pixel over a certain search window length. This method assumes that the darkest pixel corresponds to the aerosol-free condition, and deduces surface reflectance by correcting atmospheric scattering from the measured visible reflectance. The second method, named as the "atmospheric correction method" in this study, estimates the result by correcting aerosol and atmospheric scattering with ground-based observation of aerosol optical properties. The purpose of this study is to investigate the retrieval accuracy of the widelyused minimum reflectance method. Also, the retrieval error caused by the loading of background aerosol is mainly estimated. The comparison between surface reflectances retrieved from the two methods shows good agreement with the correlation coefficient of 0.87. However, the results from the minimum reflectance method are slightly overestimated than the values from the atmospheric correction method when surface reflectance is lower than 0.2. The average difference between the two results is 0.012 without the background aerosol correction. By considering the background aerosol effect, however, the difference is reduced to 0.010.

Extraction of tire information markings using a surface reflection model (표면의 반사 특성을 이용한 타이어 정보 마크의 추출)

  • Ha, Jong-Eun;Lee, Jae-Yong;Gwon, In-So
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.2 no.4
    • /
    • pp.324-329
    • /
    • 1996
  • In this paper, we present a vision algorithm to extract the tire information markings on the sidewall of tires. Since the appearance of tire marks is the same as its background, a primary feature to distinguish tire marks from their background is the roughness. Generally, the roughness of tire marks is different from that of its bakground: the surface of tire marks is smoother than the backgrounds. Light incident on the tire surface is reflected differently according to the roughness. For smoother surfaces, the surface irradiance is much stronger than that of rough surfaces. Based on these phenomena and observation, we propose an optimal illumination condition based on Torrance-Sparrow reflection model. We also develop an efficient reflectance-ratio based operator to extract the boundary of tire marks. Even with a very simple masking operation, we were able to obtain remarkable boundary extraction results from real experiments using many tires. By explicitly using the surface reflection model to explain the intensity variation on the black tire surface, we demonstrate that a physics-based vision method is powerful and feasible in extracting surface markings on tires.

  • PDF

Investigation of Reflectance Distribution and Trend for the Double Ray Located in the Northwest of Tycho Crater

  • Yi, Eung Seok;Kim, Kyeong Ja;Choi, Yi Re;Kim, Yong Ha;Lee, Sung Soon;Lee, Seung Ryeol
    • Journal of Astronomy and Space Sciences
    • /
    • v.32 no.2
    • /
    • pp.161-166
    • /
    • 2015
  • Analysis of lunar samples returned by the US Apollo missions revealed that the lunar highlands consist of anorthosite, plagioclase, pyroxene, and olivine; also, the lunar maria are composed of materials such as basalt and ilmenite. More recently, the remote sensing approach has enabled reduction of the time required to investigate the entire lunar surface, compared to the approach of returning samples. Moreover, remote sensing has also made it possible to determine the existence of specific minerals and to examine wide areas. In this paper, an investigation was performed on the reflectance distribution and its trend. The results were applied to the example of the double ray stretched in parallel lines from the Tycho crater to the third-quadrant of Mare Nubium. Basic research and background information for the investigation of lunar surface characteristics is also presented. For this research, resources aboard the SELenological and ENgineering Explorer (SELENE), a Japanese lunar probe, were used. These included the Multiband Imager (MI) in the Lunar Imager/Spectrometer (LISM). The data of these instruments were edited through the toolkit, an image editing and analysis tool, Exelis Visual Information Solution (ENVI).

Vegetation Cover Characteristics for Five Soils at Chungbuk Prefecture and Tideland Soil Using Remote Sensing Technology (원격탐사(RS) 기법을 이용한 충북지역 5개 토양과 갯벌토양의 식생피복특성)

  • Park, Jong-Hwa
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.6 no.3
    • /
    • pp.9-16
    • /
    • 2003
  • In support of remote sensing applications for monitoring processes of the Earth system, research was conducted to analyze the basic spectral response related to background soil and vegetation cover characteristics in the visible and reflective infrared wavelengths. Surface samples of seven stations were examined. Five soils were from land-field and two soils from tideland areas. The vegetation cover experiment was conducted on seven soil samples with known natural moisture content (%) by weight. To study the effect of vegetation cover, spectral measurements were taken on five or six vegetation cover treatments of the seven soils with 3 replications in air dry conditions. For collecting RS base data, used spectro-radiometer that measures reflection characteristics between 300~1,100nm was used and measured the reflection of vegetation from bean leaves. The relationships were evaluated for both a general soil line and for the individual lines of five soils, under air-dried condition as well as different vegetation cover ratio, through the determination of the line parameters. As vegetation cover ratio in bean leaves increases, features of soil reflectance decrease and those of plant reflectance become more and more apparent. In proportion to vegetation cover rate, near-infrared reflectance increased and visible reflectance decreased. Analysis results are compared to commonly used vegetation indices(RVI and NDVI ).

IR Characteristics of an Aircraft in Different Atmospheric/Background Conditions (대기/배경에 따른 계절별 항공기 적외선 방사 특성)

  • Kim, Taehwan;Song, Jiwoon;Cha, Jong Hyun;Bae, Ji-Yeul;Jung, Daeyoon;Cho, Hyung Hee
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.17 no.4
    • /
    • pp.456-462
    • /
    • 2014
  • Infrared(IR) guided heat-seeking missiles uses IR emissions from aircraft to detect and track a target. Due to passive characteristic of the IR guidance, early detection of the missile is difficult and it is significant threat to aircraft survivability. Therefore, IR signature prediction of the aircraft is an important aspect of the stealth technology. In this study, we simulated IR signature of the aircraft in real atmospheric conditions. Aircraft surface temperature distribution was calculated by using RadthermIR code. Based on temperature distribution, IR radiance and BRDF(Bidirectional Reflectance Distribution Function) image were simulated for different weather(seasonal) and background(sky/soil) conditions. The IR contrast tendencies are not aligned with surface temperature or magnitude of target IR radiance. Therefore, it is essential to simulate IR signature with various conditions and background to acquire reliable database.

Development of an Optical Range Finder for Surface Roughness Measurements (표면 요철 측정을 위한 광학적 거리 측정기 개발)

  • Eom, Jung-Hyun;Park, Hyun-Hee;Seo, Dong-Sun;Huh, Woong;Kim, Joon-Bum;Kim, Yon-Gon
    • Journal of IKEEE
    • /
    • v.2 no.1 s.2
    • /
    • pp.53-60
    • /
    • 1998
  • We develope a high repetition rate, short distance, optical range finder for surface roughness measurements of large structures, such as a highway road, etc. For range measurement based on a triangulation principle, we use a light emitting diode and an one dimensional Position sensitive photodetector for a light source and an angle detector of the reflected light at the object, respectively. The range finder has automatic power control and electrical background noise rejection capabilities which enable it to overcome variations of an object reflectance and to eliminate time-varying, as well as constant, background light noises. Our experimental results show less than ${\pm}1.5mm$ of measurement errors regardless of an object reflectance, for $22{\sim}38cm$ object ranges which are determined by considering the installation of the range finder and the depth of surface roughness.

  • PDF

A Study on Optical Condition and preprocessing for Input Image Improvement of Dented and Raised Characters of Tires (타이어 음,양각 문자의 입력영상 개선을 위한 전처리와 광학조건에 관한 연구)

  • 류한성;최중경;구본민;박무열;윤경섭
    • Proceedings of the IEEK Conference
    • /
    • 2001.06d
    • /
    • pp.93-96
    • /
    • 2001
  • In this paper, we present a vision algorithm and method for input image improvement and preprocessing of dented and raised characters on the sidewall of tires. we define optical condition between reflect coefficient and reflectance by the physical vector calculate. On the contrary this work will recognize the engraved characters using the computer vision technique. Tire input images have all most same grey levels between the characters and backgrounds. The reflectance is little from a tire surface. therefore, it's very difficult segment the characters from the background. Moreover, one side of the character string is raised and the other is dented. So, the captured images are varied with the angle of camera and illumination. For optimum input images, the angle between camera and illumination was found out to be with in 90。 .In addition, We used complex filtering with low-pass and high-pass band filters to improve input images, for clear input images. Finally we define equation reflect coefficient and reflectance. By doing this, we obtained good images of tires for pattern recognition.

  • PDF

An reproduction algorithm of nighttime road-image for visibility evaluation of headlamps (헤드램프의 시계성 평가를 위한 야간 도로 영상 재현 알고리즘)

  • 이철희;하영호
    • Proceedings of the IEEK Conference
    • /
    • 2000.11d
    • /
    • pp.69-72
    • /
    • 2000
  • This study proposes a new calculation method for generating real nighttime lamp-lit images. In order to improve the color appearance in the prediction of a nighttime lamp-lighted scene, the lamp-lit image is synthesized based on spectral distribution using the estimated local spectral distribution of the headlamps and the surface reflectance of every object. The principal component analysis method is introduced to estimate the surface color of an object, and the local spectral distribution of the headlamps is calculated based on the illuminance data and spectral distribution of the illuminating headlamps. HID and halogen lamps are utilized to create beam patterns and captured road scenes are used as background images to simulate actual headlamp-lit images on a monitor. As a result, the reproduced images presented a color appearance that was very close to a real nighttime road image illuminated by single and multiple headlamps.

  • PDF

A Study on Optical Condition and preprocessing for Input Image Improvement of Dented and Raised Characters of Rubber Tires (고무타이어 문자열 입력영상 개선을 위한 전처리와 광학조건에 관한 연구)

  • 류한성;최중경;권정혁;구본민;박무열
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.6 no.1
    • /
    • pp.124-132
    • /
    • 2002
  • In this paper, we present a vision algorithm and method for input image improvement and preprocessing of dented and raised characters on the sidewall of tires. we define optical condition between reflect coefficient and reflectance by the physical vector calculate. On the contrary this work will recognize the engraved characters using the computer vision technique. Tire input images have all most same grey levels between the characters and backgrounds. The reflectance is little from a tire surface. therefore, it's very difficult segment the characters from the background. Moreover, one side of the character string is raised and the other is dented. So, the captured images are varied with the angle of camera and illumination. For optimum Input images, the angle between camera and illumination was found out to be with in 90$^{\circ}$. In addition, We used complex filtering with low-pass and high-pass band filters to improve input images, for clear input images. Finally we define equation reflect coefficient and reflectance. By doing this, we obtained good images of tires for pattern recognition.