본 논문에서는 학습이 가능한 특정화자의 발화음성이 있는 경우, 잡음과 반향이 있는 실 환경에서의 스테레오 마이크로폰을 이용한 특정화자 음성복원 알고리즘을 제안한다. 이를 위해 반향이 있는 환경에서 음원들을 분리하는 다중경로 암묵음원분리(convolutive blind source separation, CBSS)와 이의 후처리 방법을 결합함으로써, 잡음이 섞인 다중경로 신호로부터 잡음과 반향을 제거하고 특정화자의 음성만을 복원하는 시스템을 제시한다. 즉, 비음수 행렬분해(non-negative matrix factorization, NMF) 방법을 이용하여 특정화자의 학습음성으로부터 주파수 특성을 보존하는 기저벡터들을 학습하고, 이 기저벡터들에 기반 한 두 단계의 후처리 기법들을 제안한다. 먼저 본 시스템의 중간단계인 CBSS가 다중경로 신호를 입력받아 독립음원들을(두 채널) 출력하고, 이 두 채널 중 특정화자의 음성에 보다 가까운 채널을 자동적으로 선택한다(채널선택 단계). 이후 앞서 선택된 채널의 신호에 남아있는 잡음과 다른 방해음원(interference source)을 제거하여 특정화자의 음성만을 복원, 최종적으로 잡음과 반향이 제거된 특정화자의 음성을 복원한다(복원 단계). 이 두 후처리 단계 모두 특정화자 음성으로부터 학습한 기저벡터들을 이용하여 동작하므로 특정화자의 음성이 가지는 고유의 주파수 특성 정보를 효율적으로 음성복원에 이용 할 수 있다. 이로써 본 논문은 CBSS에 음원의 사전정보를 결합하는 방법을 제시하고 기존의 CBSS의 분리 결과를 향상시키는 동시에 특정화자만의 음성을 복원하는 시스템을 제안한다. 실험을 통하여 본 제안 방법이 잡음과 반향 환경에서 특정화자의 음성을 성공적으로 복원함을 확인할 수 있다.
Broadcast news transcription is one of the hardest tasks in speech recognition because broadcast speech signals have much variability in speech quality, channel and background conditions. We developed a Korean broadcast news speech recognizer. We used a morpheme-based dictionary and a language model to reduce the out-of·vocabulary (OOV) rate. We concatenated the original morpheme pairs of short length or high frequency in order to reduce insertion and deletion errors due to short morphemes. We used a lexicon with multiple pronunciations to reflect inter-morpheme pronunciation variations without severe modification of the search tree. By using the merged morpheme as recognition units, we achieved the OOV rate of 1.7% comparable to European languages with 64k vocabulary. We implemented a hidden Markov model-based recognizer with vocal tract length normalization and online speaker adaptation by maximum likelihood linear regression. Experimental results showed that the recognizer yielded 21.8% morpheme error rate for anchor speech and 31.6% for mostly noisy reporter speech.
This paper describes the development of a speaker-dependent isolated word recognizer as applied to voice dialing in a car noise environment. for this purpose, several methods to improve performance under such condition are evaluated using database collected in a small car moving at 100km/h The main features of the recognizer are as follow: The endpoint detection error can be reduced by using the magnitude of the signal which is inverse filtered by the AR model of the background noise, and it can be compensated by using variants of the DTW algorithm. To remove the noise, an autocorrelation subtraction method is used with the constraint that residual energy obtainable by linear predictive analysis should be positive. By using the noise rubust distance measure, distortion of the feature vector is minimized. The speech recognizer is implemented using the Motorola DSP56001(24-bit general purpose digital signal processor). The recognition database is composed of 50 Korean names spoken by 3 male speakers. The recognition error rate of the system is reduced to 4.3% using a single reference pattern for each word and 1.5% using 2 reference patterns for each word.
Journal of information and communication convergence engineering
/
제8권6호
/
pp.640-644
/
2010
When we talk with hands-free in a car or noisy lobby, the performance of the echo canceller degrade because background noise added to echo caused by the distance from mouth to microphone is relatively long. It gives a reason for necessity of noise-robust and high convergence speed adaptive algorithm. And if acoustic echo canceller operated not perfectly, residual signal going through the echo canceller to far-end speaker remains residual echo, which degrade quality of talk. To solve this problem, post-processing needed to remove residual echo ones more. In this paper, we propose a new acoustic echo canceller, which has noise robust and high convergence speed, linked with linear predictor as a post-processor. By computer simulation, it is confirmed that the proposed algorithm shows better performance from acoustic interference cancellation (AIC) viewpoint.
In this paper, we proposed Backgorund Model Set algorithm for the speaker verification to improve the shortcoming of calculating process in conventional confidence measure(CM). CM is to display relative likelihood between recognized models and unrecognized models. Unrecognized models is known as antiphone models. Calculate probability and standard deviation using all phonemes at process that compose antiphone model. At this process, antiphone CM brought bad result. Also, recognition time increases. In order problem, we studied about method to reconstitute average and standard deviation taking BMS algorithm using antiphoneme that near phoneme of CM calculation.
Background and Objectives : Conditions such as muscle atrophy, stretching of strap muscles, and continued craniofacial growth factors have been cited as contributing to the changes observed in the vocal tract structure and function in elderly speakers. The purpose of the present study is to compare F$_1$ and F$_2$ frequency levels in elderly and young adult male and female speakers producing a series of vowels ranging from high-front to low-back placement. Material and Methods : The subjects were two groups of young adults(10 males, 10 females, mean age 21 years old range 19-24 years) and two groups of elderly speakers(10 males, 10 females, mean age 67 years : range 60-84 years). Each subject participated in speech pathologist to be a speaker of unimpared standard Korean. The headphone was positioned 2 cm from the speakers lips. Each speaker sustained the five vowels for 5 s. Formant frequency measures were obtained from an analysis of linear predictive coding in CSL model 4300B(Kay co). Results : Repeated measure AVOVA procedures were completed on the $F_1$ and $F_2$ data for the male and female speakers. $F_2$ formant frequency levels were proven to be significantly lower fir elderly speakers. Conclusions : We presume $F_2$ vocal cavity(from the point of tongue constriction to lip) lengthening in elderly speakers. The research designed to observe dynamic speech production more directly will be needed.
본 논문에서는 배경잡음과 반향이 존재하는 차량환경에서 음성인식 성능을 향상시키기 위해 상관계수를 이용한 동시통화 검출 알고리즘을 적용한 음향 반향제거기와 barge-in 기능을 갖는 음성 인터페이스를 구현하였다. 상관계수를 이용한 동시통화 검출 알고리즘은 임계치 설정 및 배경잡음의 영향 등으로 인해 검출 오류가 발생한다. 이를 보완하기 위해 동시통화 검출 조건으로 매 샘플마다 입력신호에서 추정한 배경잡음 및 반향신호의 평균 전력을 이용하여 동시통화 검출 오류를 줄였으며, 시변의 임계치를 적용한 후처리 단을 통해 시변의 잔여 잡음 성분을 제거하였다. 또한 안내음성 중에 음성입력이 가능하도록 barge-in 기능을 적용한 음성 인터페이스 시스템을 구현하였다. 제안한 음성 인터페이스 시스템은 동시통화 검출 오류와 이로 인해 발생되는 문제점을 효율적으로 해결할 수 있음을 실험을 통하여 확인하였다.
립리딩은 잡음 환경에서 저하되는 음성 인식률의 보상과 음성을 청취하기 어려운 상황에서의 음성인식보조 수단으로 많은 연구가 시도되고 있다. 기존 립리딩 시스템은 인위적인 조명 환경이나 얼굴과 입술 추출을 위하여 미리 정해진 제한된 조건에서 실험되어 왔다. 본 논문에서는 화자의 움직임이 허용되고 컬러나 조명과 같은 환경 변화에 제한조건을 완화한 영상을 이용하여 실시간 립리딩 시스템을 구현하였다. 본 논문의 시스템은 범용으로 사용되는 PC 카메라를 통해 입력받은 영상에서 얼굴과 입술 영역을 실시간으로 검출한 후, 립리딩에 필요한 영상정보를 추출하고 이 입술 영상 정보를 이용하여 실시간으로 발성 단어를 인식할 수 있다. 얼굴과 입술 영역 검출을 위하여 조명환경에 독립성을 갖는 색도 히스토그램 모델을 이용하였고 움직이는 화자의 얼굴 추적을 위하여 평균 이동 알고리즘을 이용하였다. 검출된 입술 영역에서 학습과 인식에 필요한 영상 정보를 추출하기 위하여 PCA(Principal Component Analysis)를 사용하였고, 인식 알고리즘으로는 HMM을 이용하였다. 실험 결과 화자종속일 경우 90%의 인식률을 보였으며 잡음이 있는 음성과 합병하여 인식률 실험을 해 본 결과, 음성 잡음비에 따라서 음성 인식률을 약 40~85%까지 향상시킬 수 있었다.
본 연구는 전통뉴스 보도에 나타난 인공지능(AI)스피커 뉴스 텍스트 분석을 통해 인공지능(AI) 스피커 발달과정을 분류하고 시기별 제품별 특성을 파악하였다. 또한 AI 스피커 사업자 제품별 뉴스 보도와 시기별 뉴스 보도간의 상관관계를 분석하였다. 분석에 사용된 이론적 배경은 뉴스의 프레임과 토픽프레임이다. 분석방법으로는 LDA 방식을 활용한 토픽모델링(Topic Modeling)과 의미연결망분석이 사용되었으며, 추가로 'UCINET'중 QAP분석을 적용하였다. 연구방법은 내용분석 방법으로 2014년부터 2019년까지 AI 스피커 관련 2,710건의 뉴스를 1차로 수집하였고, 2차적으로 Nodexl 알고리즘을 이용하여 토픽프레임을 분석하였다. 분석 결과 첫째, AI 스피커 사업자 유형별 토픽 프레임의 경향은 4개 사업자(통신사업자, 온라인 플랫폼, OS 사업자, IT디바이스 생산업자) 특성에 따라 다르게 나타났다. 구체적으로, 온라인 플랫폼 사업자(구글, 네이버, 아마존, 카카오)와 관련한 프레임은 AI 스피커를 '검색 또는 입력 디바이스'로 사용하는 프레임의 비중이 높았다. 반면 통신 사업자(SKT, KT)는 모회사의 주력 사업인 IPTV, 통신 사업의 '보조 디바이스' 관련한 프레임이 두드러지게 나타났다. 나아가 OS 사업자(MS, 애플)는 '제품의 의인화 및 음성 서비스' 프레임이 두드러지게 보였으며, IT 디바이스 생산업자(삼성)는 '사물인터넷(IoT) 종합지능시스템'과 관련한 프레임이 두드러지게 나타났다. 둘째, AI 스피커 시기별(연도별) 토픽 프레임의 경향은 1기(2014-2016년)에는 AI 기술 중심으로 발달하는 경향을 보였고, 2기(2017-2018년)에는 AI 기술과 이용자 간의 사회적 상호 작용과 관련되어 있었으며, 3기(2019년)에는 AI 기술 중심에서 이용자 중심으로 전환되는 경향을 나타냈다. QAP 분석 결과, AI 스피커 발달에서 사업자별과 시기별 뉴스 프레임이 미디어 담론의 결정요인에 의해 사회적으로 구성되는 것을 알 수 있었다. 본연구의 함의는 AI 스피커 진화는 사업자별, 발달시기별로 모회사 기업의 특성과 이용자 간의 상호작용으로 인한 공진화 과정이 나타냄을 발견할 수 있었다. 따라서 본 연구는 AI 스피커의 향후 전망을 예측하고 그에 따른 방향성을 제시하는 데 중요한 시사점을 제공한다.
In order to understand the various groups' perceptual pattern in both VCV trochee and iambus, this study examined the identification correctness and cue robustness for the unit intervals in light of background language, age, and English listening ability. The 4 groups of Native Speakers of English, Korean College Students of High Listening Achievement, Korean College Students of Low Listening Achievement, and Korean Elementary Students took part in the experiments. Tokens of $/d{\ae}per,\;d{\ae}per,\;d{\ae}per,\;d{\ae}per,\;d{\ae}per,\;d{\ae}per$ in trochee and of $/{\eth}{\partial}\;p{\ae}d,\;{\eth}{\partial}\;b{\ae}d,\;{\eth}{\partial}\;t{\ae}d,\;{\eth}{\partial}\;d{\ae}d,\;{\eth}{\partial}\;k{\ae}d,\;{\eth}{\partial}\;g{\ae}d/$ in iambus were extracted and modified into experimental signals composed of two digits(voiced-1, voiceless-0) by following the temporal intervals, in which the signals consisted of preceding vowel, closure, VOT, and post-vowel. In the first experiment of identification correctness in VCV iambus environment, all groups showed almost 100% correctness rate, while in trochee environment all groups were different(native speaker 87%, college high 74%, college low 70%, elementary 65%). In the second experiment of cue robustness, all groups showed the similar perceptual pattern in both environments. There was the order of robustness cues in VCV trochee: pre-vowel ${\gg}$ closure ${\gg}$ VOT ${\gg}$ post-vowel, while the order in VCV iambus: VOT ${\gg}$ post-vowel ${\gg}$ closure ${\gg}$ pre-vowel. In some condition, however, we found moderately different perceptual pattern depending on language, age and listening level.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.