• Title/Summary/Keyword: Background Image Update

Search Result 31, Processing Time 0.024 seconds

Determining Method of Factors for Effective Real Time Background Modeling (효과적인 실시간 배경 모델링을 위한 환경 변수 결정 방법)

  • Lee, Jun-Cheol;Ryu, Sang-Ryul;Kang, Sung-Hwan;Kim, Sung-Ho
    • Journal of KIISE:Software and Applications
    • /
    • v.34 no.1
    • /
    • pp.59-69
    • /
    • 2007
  • In the video with a various environment, background modeling is important for extraction and recognition the moving object. For this object recognition, many methods of the background modeling are proposed in a process of preprocess. Among these there is a Kumar method which represents the Queue-based background modeling. Because this has a fixed period of updating examination of the frame, there is a limit for various system. This paper use a background modeling based on the queue. We propose the method that major parameters are decided as adaptive by background model. They are the queue size of the sliding window, the sire of grouping by the brightness of the visual and the period of updating examination of the frame. In order to determine the factors, in every process, RCO (Ratio of Correct Object), REO (Ratio of Error Object) and UR (Update Ratio) are considered to be the standard of evaluation. The proposed method can improve the existing techniques of the background modeling which is unfit for the real-time processing and recognize the object more efficient.

Dynamic Control of Learning Rate in the Improved Adaptive Gaussian Mixture Model for Background Subtraction (배경분리를 위한 개선된 적응적 가우시안 혼합모델에서의 동적 학습률 제어)

  • Kim, Young-Ju
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.2
    • /
    • pp.366-369
    • /
    • 2005
  • Background subtraction is mainly used for the real-time extraction and tracking of moving objects from image sequences. In the outdoor environment, there are many changeable factor such as gradually changing illumination, swaying trees and suddenly moving objects, which are to be considered for the adaptive processing. Normally, GMM(Gaussian Mixture Model) is used to subtract the background adaptively considering the various changes in the scenes, and the adaptive GMMs improving the real-time performance were worked. This paper, for on-line background subtraction, applied the improved adaptive GMM, which uses the small constant for learning rate ${\alpha}$ and is not able to speedily adapt the suddenly movement of objects, So, this paper proposed and evaluated the dynamic control method of ${\alpha}$ using the adaptive selection of the number of component distributions and the global variances of pixel values.

  • PDF

Multi-feature local sparse representation for infrared pedestrian tracking

  • Wang, Xin;Xu, Lingling;Ning, Chen
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.3
    • /
    • pp.1464-1480
    • /
    • 2019
  • Robust tracking of infrared (IR) pedestrian targets with various backgrounds, e.g. appearance changes, illumination variations, and background disturbances, is a great challenge in the infrared image processing field. In the paper, we address a new tracking method for IR pedestrian targets via multi-feature local sparse representation (SR), which consists of three important modules. In the first module, a multi-feature local SR model is constructed. Considering the characterization of infrared pedestrian targets, the gray and edge features are first extracted from all target templates, and then fused into the model learning process. In the second module, an effective tracker is proposed via the learned model. To improve the computational efficiency, a sliding window mechanism with multiple scales is first used to scan the current frame to sample the target candidates. Then, the candidates are recognized via sparse reconstruction residual analysis. In the third module, an adaptive dictionary update approach is designed to further improve the tracking performance. The results demonstrate that our method outperforms several classical methods for infrared pedestrian tracking.

Implementation of An Unmanned Visual Surveillance System with Embedded Control (임베디드 제어에 의한 무인 영상 감시시스템 구현)

  • Kim, Dong-Jin;Jung, Yong-Bae;Park, Young-Seak;Kim, Tae-Hyo
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.12 no.1
    • /
    • pp.13-19
    • /
    • 2011
  • In this paper, a visual surveillance system using SOPC based NIOS II embedded processor and C2H compiler was implemented. In this system, the IP is constructed by C2H compiler for the output of the camera images, image processing, serial communication and network communication, then, it is implemented to effectively control each IP based on the SOPC and the NIOS II embedded processor. And, an algorithm which updates the background images for high speed and robust detection of the moving objects is proposed using the Adaptive Gaussian Mixture Model(AGMM). In results, it can detecte the moving objects(pedestrians and vehicles) under day-time and night-time. It is confirmed that the proposed AGMM algorithm has better performance than the Adaptive Threshold Method(ATM) and the Gaussian Mixture Model(GMM) from our experiments.

Robust Vision Based Algorithm for Accident Detection of Crossroad (교차로 사고감지를 위한 강건한 비젼기반 알고리즘)

  • Jeong, Sung-Hwan;Lee, Joon-Whoan
    • The KIPS Transactions:PartB
    • /
    • v.18B no.3
    • /
    • pp.117-130
    • /
    • 2011
  • The purpose of this study is to produce a better way to detect crossroad accidents, which involves an efficient method to produce background images in consideration of object movement and preserve/demonstrate the candidate accident region. One of the prior studies proposed an employment of traffic signal interval within crossroad to detect accidents on crossroad, but it may cause a failure to detect unwanted accidents if any object is covered on an accident site. This study adopted inverse perspective mapping to control the scale of object, and proposed different ways such as producing robust background images enough to resist surrounding noise, generating candidate accident regions through information on object movement, and by using edge information to preserve and delete the candidate accident region. In order to measure the performance of proposed algorithm, a variety of traffic images were saved and used for experiment (e.g. recorded images on rush hours via DVR installed on crossroad, different accident images recorded in day and night rainy days, and recorded images including surrounding noise of lighting and shades). As a result, it was found that there were all 20 experiment cases of accident detected and actual effective rate of accident detection amounted to 76.9% on average. In addition, the image processing rate ranged from 10~14 frame/sec depending on the area of detection region. Thus, it is concluded that there will be no problem in real-time image processing.

Combined Active Contour Model and Motion Estimation for Real-Time Object Tracking (능동윤곽모델과 움직임 추정을 결합한 실시간 객체 추적 기술)

  • Kim, Dae-Hee;Lee, Dong-Eun;Paik, Joon-Ki
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.44 no.5
    • /
    • pp.64-72
    • /
    • 2007
  • In this paper we proposed a combined active contour model and motion estimation-based object tracking technique. After assigning the initial contour, we find the object's boundary and update the initial contour by using object's motion information. In the following frames, similar snake algorithm is repeated to make continuously estimated object's region. The snake algerian plays a role in separating the object from background, while motion estimation provides object's moving direction and displacement. The proposed algorithm provides equivalently stable, robust, tracking performance with significantly reduced amount of computation, compared with the existing shape model-based algorithms.

A Study on Update for Part Area of Background Image in Real-Time (실시간 배경영상의 부분영역 갱신에 관한 연구)

  • Lee, Kwang-Hyoung;Kim, Yong-Gyun;Choi, Nae-Won;Jee, Jeong-Gyu;Oh, Hae-Seok
    • Annual Conference of KIPS
    • /
    • 2002.11a
    • /
    • pp.715-718
    • /
    • 2002
  • 실시간 동영상에서 객체의 추적은 배경영상에서 움직이는 객체를 추출하고 추출된 객체의 이동을 추적하는 것으로 컴퓨터 비전 및 여러 실용적 응용 분야에서 관심을 가지는 주제중 하나이다. 본 논문에서는 실시간 객체의 추적에서 배경영상과 입력영상의 차영상을 이용하는 방법의 전 처리로 시간의 흐름에 따라 변화되는 배경영상의 잡음을 최소화하기 위하여 입력영상의 일부분을 배경영상으로 대체함으로 최신의 배경영상을 유지 할 수 있는 방법을 제안하고자 한다. 실시간 동영상의 객체추적은 배경영상과 입력영상의 차를 이용하는데 최초의 배경영상은 시간의 흐름에 의해 빛의 양이나 주위환경에 의해 많은 변화를 가져오게 된다. 또한 실시간으로 처리해야 하는 시간성으로 인해 최신의 배경영상을 획득하는데 많은 처리시간을 할애할 수 없다. 따라서 전체 영상의 일부분을 대상으로 점진적으로 누적영상을 배경영상에 적용함으로 실시간 환경에서의 배경영상의 변화에 의한 잡음을 최소화 하도록 하였다.

  • PDF

A Vehicle Detection Algorithm for a Lane Change (차선 변경을 위한 차량 탐색 알고리즘)

  • Ji, Eui-Kyung;Han, Min-Hong
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.8 no.2
    • /
    • pp.98-105
    • /
    • 2007
  • In this paper, we propose the method and system which determines the condition for safe and unsafe lane changing. To determine the condition, first, the system sets up the Region of Interest(ROI) on the neighboring lane. Second, a dangerous vehicle is extracted during the line changing. Third, the condition is determined to wm or not by calculating the moving direction, relative distance md relative velocity. To set up the ROI, the only one side lane is detected and the interested region is expanded. Using the coordinate transformation method, the accuracy of the ROI raised. To correctly extract the vehicle on the neighboring lane, the Adaptive Background Update method and Image Segmentation method which uses the feature of the travelling road are used. The object which is extracted by the dangerous vehicle is calculated the relative distance, the relative velocity and the moving average. And then in order to ring, the direction of the vehicle and the condition for safe and unsafe is determined. As minimizes the interested region and uses the feature of the travelling road, the computational quantity is reduced and the accuracy is raised and a stable result on a travelling road images which demands a high speed calculation is showed.

  • PDF

Localizing Head and Shoulder Line Using Statistical Learning (통계학적 학습을 이용한 머리와 어깨선의 위치 찾기)

  • Kwon, Mu-Sik
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.2C
    • /
    • pp.141-149
    • /
    • 2007
  • Associating the shoulder line with head location of the human body is useful in verifying, localizing and tracking persons in an image. Since the head line and the shoulder line, what we call ${\Omega}$-shape, move together in a consistent way within a limited range of deformation, we can build a statistical shape model using Active Shape Model (ASM). However, when the conventional ASM is applied to ${\Omega}$-shape fitting, it is very sensitive to background edges and clutter because it relies only on the local edge or gradient. Even though appearance is a good alternative feature for matching the target object to image, it is difficult to learn the appearance of the ${\Omega}$-shape because of the significant difference between people's skin, hair and clothes, and because appearance does not remain the same throughout the entire video. Therefore, instead of teaming appearance or updating appearance as it changes, we model the discriminative appearance where each pixel is classified into head, torso and background classes, and update the classifier to obtain the appropriate discriminative appearance in the current frame. Accordingly, we make use of two features in fitting ${\Omega}$-shape, edge gradient which is used for localization, and discriminative appearance which contributes to stability of the tracker. The simulation results show that the proposed method is very robust to pose change, occlusion, and illumination change in tracking the head and shoulder line of people. Another advantage is that the proposed method operates in real time.

Comprehension and Appropriate Use of a Flood Table on a Gamma Camera (감마 카메라의 Flood Table에 대한 이해와 적절한 이용)

  • Kim, Jae-Il;Im, Jeong-Jin;Kim, Jin-Eui;Kim, Hyun-Joo
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.15 no.1
    • /
    • pp.29-33
    • /
    • 2011
  • Background and Purpose: Uniformity is the one of the important quality control features with respect to gamma cameras. To maintain adequate uniformity, we must acquire suitable flood table (=flood map) data because the flood table effects energy, and the type or dose of input radiation. Therefore, in this study we evaluated the difference in uniformity when uniformity does not match between the type of input radiation and the flood table data or collimator type. Subjects and Methods: For input radiation, we prepared 370 MBq of $^{57}Co$, $^{99m}Tc$, and $^{201}Tl$. Using SKYLight (Philips) and Infinia gamma cameras (GE), we acquired nine uniformity data that were corrected by technetium, cobalt flood table and did not corrected image for the three sources. Additionally, we acquired two uniformity images with a collimator that were corrected by intrinsic and extrinsic flood tables. Using this data, we evaluated and compared the uniformity values. Results: In the case of the SKYLight gamma camera, the uniformities of the images that matched between the input radiation and flood table with respect to $^{99m}Tc$ and $^{57}Co$ were better than the unmatched uniformity (3.96% vs. 5.69% ; 4.9% vs. 5.91%). However, because there was no thallium flood table, the uniformities of images at Tl were significantly incorrect (7.49%, 7.03%). The uniformities of the Infinia gamma camera had the same pattern as the SKYLight gamma camera (3.7% vs. 4.5%). Moreover, the uniformity of the $^{99m}Tc$ image acquired with a collimator and corrected by an extrinsic flood table was better than the intrinsic flood table (3.96% vs. 6.28%). Conclusion: Correcting an image by a suitable flood table can help achieve better uniformity for a gamma camera. Therefore, we have to acquire images with suitable uniformity correction, and update the flood table periodically. Whenever we acquire a nuclear medicine image, we always have to check the appropriate flood table according to the acquired condition.

  • PDF