• 제목/요약/키워드: Backflow Effect

검색결과 29건 처리시간 0.023초

Large Eddy Simulation of the Dynamic Response of an Inducer to Flow Rate Fluctuations

  • Kang, Dong-Hyuk;Yonezawa, Koichi;Ueda, Tatsuya;Yamanishi, Nobuhiro;Kato, Chisachi;Tsujimoto, Yoshinobu
    • International Journal of Fluid Machinery and Systems
    • /
    • 제2권4호
    • /
    • pp.431-438
    • /
    • 2009
  • A Large Eddy Simulation (LES) of the flow in an inducer is carried out under flow rate oscillations. The present study focuses on the dynamic response of the backflow and the unsteady pressure performance to the flow rate fluctuations under non-cavitation conditions. The amplitude of angular momentum fluctuation evaluated by LES is larger than that evaluated by RANS. However, the phase delay of backflow is nearly the same as RANS calculation. The pressure performance curve exhibits a closed curve caused by the inertia effect associated with the flow rate fluctuations. Compared with simplified one dimensional evaluation of the inertia component, the component obtained by LES is smaller. The negative slope of averaged performance curve becomes larger under unsteady conditions. From the conservations of angular momentum and energy, an expression useful for the evaluation of unsteady pressure rise was obtained. The examination of each term of this expression show that the apparent decrease of inertia effects is caused by the response delay of Euler's head and that the increase of negative slope is caused by the delay of inertial term associated with the delay of backflow response. These results are qualitatively confirmed by experiments.

터보펌프 인듀서의 내부 유동 해석 (An Interal Flow Analysis of Turbo Pump Inducer)

  • 심창열;강신형
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집E
    • /
    • pp.631-636
    • /
    • 2001
  • The internal flow in the rocket pump inducer of LE-7 engine for H-II rocket was predicted at design and off-design flow rates using CFD code, CFX- Tascflow. In this numerical study, the performance curve of inducer coressponding to flow rates variation and the internal flow in the front of blade leading edge show good agreement between the calculations and the measurements. Backflow is appeared at suction side of leadinge edge tip, and this region is extended to upstream as flowrate decrease. Because of backflow, pressure loss coressponding to meridinal coordinate occupy 50% from inlet domain to leading edge. By this phenomena, pressure loss in front of blade leading edge take a great effect to inducer performance.

  • PDF

베어링 지지부가 터보펌프용 인듀서의 성능에 미치는 영향 (The Effect of Bearing Strut on the Performance of the Inducer)

  • 최창호;노준구;김진선;홍순삼;김진한
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2006년 제4회 한국유체공학학술대회 논문집
    • /
    • pp.519-522
    • /
    • 2006
  • Experimental and computational studies on an turbopump inducer with and without a bearing strut were performed to evaluate the effects of a strut on the performance of an inducer. Global performance data such as head rise and efficiency, and detailed flow characteristics such as surface static pressures were measured and compared with computational results. Generally a good agreement is observed between experimental and computational results, but some discrepancies are observed due to complex flow features such as backflows at the inlet and strut/inducer interactions. For the flow rates where the backflow region is large, installing a strut enhanced the hydraulic performance of the inducer by diminishing the size of the backflows. The results also show that the strut has negligible effect on the suction performance of the inducer.

  • PDF

EFFECT OF VALVE TIMING AND LIFT ON FLOW AND MIXING CHARACTERISTICS OF A CAI ENGINE

  • Kim, J.N.;Kim, H.Y.;Yoon, S.S.;Sa, S.D.;Kim, W.T.
    • International Journal of Automotive Technology
    • /
    • 제8권6호
    • /
    • pp.687-696
    • /
    • 2007
  • To increase the reliability of auto-ignition in CAI engines, the thermodynamic properties of intake flow is often controlled using recycled exhaust gases, called internal EGR. Because of the internal EGR influence on the overall thermodynamic properties and mixing quality of the gases that affect the subsequent combustion behavior, optimizing the intake and exhaust valve timing for the EGR is important to achieve the reliable auto-ignition and high thermal efficiency. In the present study, fully 3D numerical simulations were carried out to predict the mixing characteristics and flow field inside the cylinder as a function of valve timing. The 3D unsteady Eulerian-Lagrangian two-phase model was used to account for the interaction between the intake air and remaining internal EGR during the under-lap operation while varying three major parameters: the intake valve(IV) and exhaust valve(EV) timings and intake valve lift(IVL). Computational results showed that the largest EVC retardation, as in A6, yielded the optimal mixing of both EGR and fuel. The IV timing had little effect on the mixing quality. However, the IV timing variation caused backflow from the cylinder to the intake port. With respect to reduction of heat loss due to backflow, the case in B6 was considered to present the optimal operating condition. With the variation of the intake valve lift, the A1 case yielded the minimum amount of backflow. The best mixing was delivered when the lift height was at a minimum of 2 mm.

터보펌프용 인듀서에 대한 캐비테이션 유동해석 (Numerical Simulation of Cavitating Flow Around Turbopump Inducer)

  • 최창호;노준구;김진한
    • 한국유체기계학회 논문집
    • /
    • 제13권3호
    • /
    • pp.49-53
    • /
    • 2010
  • The computational studies on the cavitating flow around a turbopump inducer were performed to see the effect of the cavitation on the performance of the inducer. The development of cavities around the inducer blades and the head drop of the inducer are observed as the inlet pressure reduces. The change of the backflow at the inducer inlet is also observed with the development of the cavities. The size of the backflow reduces as the inlet pressure is reduced due to the development of the cavities around the blades. The predicted suction performances of the inducer were compared with the experimental results. The results show that the computations overestimate the suction performances of the inducer than the experiments.

가솔린 기관 공연비 제어를 위한 흡기포트 내의 연료액막 모델링 (Modeling of Liquid Fuel Behavior to Control Air/Fuel Ratio in the Intake Port of SI Engines)

  • 조훈;민경덕;황승환;이종화
    • 대한기계학회논문집B
    • /
    • 제24권4호
    • /
    • pp.512-518
    • /
    • 2000
  • A wall fuel-film flow model is developed to predict the effect of a wall-fuel-film on air-fuel ratio in an SI engine in transient conditions. Fuel redistribution in the intake port resulting from charge backflow and a simple liquid fuel behavior in the cylinder are included in this model. Liquid fuel film flow is calculated of every crank angle degree using the instantaneous air flow rate. The model is validated by comparing the calculated results and corresponding engine experiment results of a commercial 4 cylinder DOHC engine. The predicted results match well with the experimental results. To maintain the constant air-fuel ratio during transient operation. the fuel injection rate control can be obtained from the simulation result.

후류의 영향을 받는 익형의 공력 특성 연구 (The Study of Airfoil Aerodynamic Characteristics in Backflow Field)

  • 이상우;백진솔
    • EDISON SW 활용 경진대회 논문집
    • /
    • 제4회(2015년)
    • /
    • pp.627-631
    • /
    • 2015
  • 유동 교란에 의하여 균일유동이 아닌 자유류가 항공기 날개 표면을 지나면 공력 계수들이 균일 자유류 유동과는 달라진다. 예를 들어, 항공기들의 편대 비행에서 앞의 항공기가 생성한 후류가 뒷 항공기에 영향을 주고, 두 개의 주익을 가지는 Tandem Wing 항공기의 경우 첫 번째 주익에서 발생된 후류가 두 번째 주익의 공력에 영향을 미친다. 본 연구는 NACA0012 익형의 앞쪽에 또 다른 익형을 배치하여 앞 쪽의 익형에서 발생한 후류가 뒤의 익형에 미치는 영향을 익형 사이의 거리에 따라 분석하였다. 앞쪽의 익형에서 발생한 압력계수와 뒤쪽에서 발생한 압력계수의 비교를 통해 후류의 효과가 어떤 영향을 끼치는지 확인 하였고, 두 익형 사이의 거리가 2c일 때 후류의 영향이 거의 없음을 확인 하였다.

  • PDF

도로터널 제트팬 모형 실험 (The Jet-fan Model Test for a Road Tunnel Ventilation)

  • 류재홍;유용호;김진
    • 설비공학논문집
    • /
    • 제15권8호
    • /
    • pp.630-640
    • /
    • 2003
  • As tunnel ventilation has recently been playing a major role in the tunnel construction and maintenance, longitudinal ventilation systems with jet fans have been utilized a great deal because they are economical and effective. However, due to the length of tunnels and heavy traffic, it is hard to take the field measurements. In this study, therefore, the computer simulation and the model experiment of producing a wind tunnel were carried out simultaneously and the results were compared. The ultimate objective of this research was to interpret the air flow pattern inside the tunnel with a jet-fan was set up, and to offer the useful data for jet-fan installation and operation. The experiment was carried out with varying the jet-fan diameters, location of installation, the discharge velocity. Result showed that as the initial static pressure came up with the negative pressure, the tunnel air flowed into the inside of tunnel from outside due to the entrainment-effect and the backflow-phenomenon by separation-effect was observed in the lower half part of the tunnel. As the jet-fan was getting closer to the tunnel wall, the entrainment-effect caused by the interaction with the wall was increased; however, the mixing distance and irregular flow section became longer, and also the air pressure loss generated by wall friction was large.

베어링 지지부가 터보펌프용 인듀서의 성능에 미치는 영향 (Effects of a Bearing Strut on the Performance of an Inducer for Turbopumps)

  • 최창호;노준구;김진선;홍순삼;김진한
    • 한국항공우주학회지
    • /
    • 제35권11호
    • /
    • pp.1022-1027
    • /
    • 2007
  • 베어링 지지부가 터보펌프용 인듀서의 성능에 미치는 영향에 대하여 실험적 및 계산적 연구가 수행되었다. 양정, 효율, 인듀서 슈라우드 압력 분포 등을 측정하였으며 유동해석 계산결과와 비교하였다. 유동해석결과는 실험결과와 비교하여 전체적으로 잘 일치하는 결과를 얻었다. 그러나 입구의 역류가 심해지는 저유량 작동조건에서는 계산값과 시험값이 다소의 차이를 보였다. 역류가 심해지는 저유량에서 베어링 지지부가 역류의 발달을 방해하여 인듀서의 수력성능을 향상시키는 것을 관찰하였으며, 베어링 지지부의 설치는 흡입성능에 큰 영향을 미치지 못함을 확인하였다.

Hemodynamics of a Connecting conduit Between the Left Ventricle and the Left Decending Coronary Artery

  • Shim, Eun-Bo;Sah, Jong-Yub
    • International Journal of Vascular Biomedical Engineering
    • /
    • 제1권2호
    • /
    • pp.20-29
    • /
    • 2003
  • A new treatment for coronary artery occlusive disease is being developed in which a shunt or conduit is placed directly connecting the left ventricle with the diseased artery at a point distal to the obstruction. To aid in assessing and optimizing its benefit, a computational model of the cardiovascular system was developed and used to explore various design conditions. Simulation results indicate that in complete LAD occlusion, flow can be returned to approximately 65% of normal if the conduit resistance is equal for forward and reverse flow, increasing to 80% in the limit in which backflow resistance is infinite. Increases in flow rate produced by asymmetric flow resistance are considerably enhanced in the case of a partial LAD obstruction since the primary effect of resistance asymmetry is to prevent leakage back into the ventricle("steal") during diastole. Increased arterial compliance has little effect on net flow with a symmetric shunt, but leads to considerable augmentation when the resistance is asymmetric. These results suggest that an LV-LAD conduit will be beneficial when stenosis resistance(Rst) > 27 PRU if resistance is symmetric.

  • PDF