• Title/Summary/Keyword: Backfitting

Search Result 6, Processing Time 0.013 seconds

Music and Voice Separation Using Log-Spectral Amplitude Estimator Based on Kernel Spectrogram Models Backfitting (커널 스펙트럼 모델 backfitting 기반의 로그 스펙트럼 진폭 추정을 적용한 배경음과 보컬음 분리)

  • Lee, Jun-Yong;Kim, Hyoung-Gook
    • The Journal of the Acoustical Society of Korea
    • /
    • v.34 no.3
    • /
    • pp.227-233
    • /
    • 2015
  • In this paper, we propose music and voice separation using kernel sptectrogram models backfitting based on log-spectral amplitude estimator. The existing method separates sources based on the estimate of a desired objects by training MSE (Mean Square Error) designed Winer filter. We introduce rather clear music and voice signals with application of log-spectral amplitude estimator, instead of adaptation of MSE which has been treated as an existing method. Experimental results reveal that the proposed method shows higher performance than the existing methods.

Prediction and Classification Using Projection Pursuit Regression with Automatic Order Selection

  • Park, Heon Jin;Choi, Daewoo;Koo, Ja-Yong
    • Communications for Statistical Applications and Methods
    • /
    • v.7 no.2
    • /
    • pp.585-596
    • /
    • 2000
  • We developed a macro for prediction and classification using profection pursuit regression based on Friedman (1984b) and Hwang, et al. (1994). In the macro, the order of the Hermite functions can be selected automatically. In projection pursuit regression, we compare several smoothing methods such as super smoothing, smoothing with the Hermite functions. Also, classification methods applied to German credit data are compared.

  • PDF

ON MARGINAL INTEGRATION METHOD IN NONPARAMETRIC REGRESSION

  • Lee, Young-Kyung
    • Journal of the Korean Statistical Society
    • /
    • v.33 no.4
    • /
    • pp.435-447
    • /
    • 2004
  • In additive nonparametric regression, Linton and Nielsen (1995) showed that the marginal integration when applied to the local linear smoother produces a rate-optimal estimator of each univariate component function for the case where the dimension of the predictor is two. In this paper we give new formulas for the bias and variance of the marginal integration regression estimators which are valid for boundary areas as well as fixed interior points, and show the local linear marginal integration estimator is in fact rate-optimal when the dimension of the predictor is less than or equal to four. We extend the results to the case of the local polynomial smoother, too.

Nonparametric compositional data analysis for tourism industry in Gangwon area (강원도 관광산업에 대한 비모수적 구성비 자료 분석)

  • Seongeun Park;Jeong Min Jeon;Young Kyung Lee
    • The Korean Journal of Applied Statistics
    • /
    • v.36 no.5
    • /
    • pp.473-488
    • /
    • 2023
  • Gangwon-do is one of Korea's most popular tourist destinations, with varying tourism demands and trends across its subregions. It is crucial to identify the characteristics of tourism in each area and compare the tourism patterns over time to devise policies that revitalize tourism in each local government and promote balanced development across regions. In this paper, we classify the regions in Gangwon-do based on tourism data from the last four years and analyze the tourism pattern of each region using the non-Euclidean additive model proposed by Jeon et al. (2021). The model incorporates the proportions of visitors by age groups and the proportions of navigation searches by destination types as two covariates, and the proportions of tourism expenditure types as a response variable. We estimate the model using the smooth-backfitting method and coordinate-wise bandwidth selection. The results are visualized in ternary plots, and changes in tourism patterns over time are analyzed by comparing the ratios of prediction errors to fitting errors.

Comparison of tree-based ensemble models for regression

  • Park, Sangho;Kim, Chanmin
    • Communications for Statistical Applications and Methods
    • /
    • v.29 no.5
    • /
    • pp.561-589
    • /
    • 2022
  • When multiple classifications and regression trees are combined, tree-based ensemble models, such as random forest (RF) and Bayesian additive regression trees (BART), are produced. We compare the model structures and performances of various ensemble models for regression settings in this study. RF learns bootstrapped samples and selects a splitting variable from predictors gathered at each node. The BART model is specified as the sum of trees and is calculated using the Bayesian backfitting algorithm. Throughout the extensive simulation studies, the strengths and drawbacks of the two methods in the presence of missing data, high-dimensional data, or highly correlated data are investigated. In the presence of missing data, BART performs well in general, whereas RF provides adequate coverage. The BART outperforms in high dimensional, highly correlated data. However, in all of the scenarios considered, the RF has a shorter computation time. The performance of the two methods is also compared using two real data sets that represent the aforementioned situations, and the same conclusion is reached.

Functional regression approach to traffic analysis (함수회귀분석을 통한 교통량 예측)

  • Lee, Injoo;Lee, Young K.
    • The Korean Journal of Applied Statistics
    • /
    • v.34 no.5
    • /
    • pp.773-794
    • /
    • 2021
  • Prediction of vehicle traffic volume is very important in planning municipal administration. It may help promote social and economic interests and also prevent traffic congestion costs. Traffic volume as a time-varying trajectory is considered as functional data. In this paper we study three functional regression models that can be used to predict an unseen trajectory of traffic volume based on already observed trajectories. We apply the methods to highway tollgate traffic volume data collected at some tollgates in Seoul, Chuncheon and Gangneung. We compare the prediction errors of the three models to find the best one for each of the three tollgate traffic volumes.