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Prediction and Classification Using Projection Pursuit
Regression with Automatic Order Selectionl)

Heon Jin Park2), Daewoo Choi3) and Ja-Yong Koo%

Abstract

We developed a macro for prediction and classification using projection pursuit
regression based on Friedman (1984b) and Hwang, et al (1994). In the macro, the
order of the Hermite functions can be selected automatically. In projection pursuit
regression, we compare several smoothing methods such as super smoothing,
smoothing with the Hermite functions. Also, classification methods applied to German
credit data are compared.
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1. Introduction

Projection pursuit regression proposed by Friedman and Stuetzle (1981) is a statistical
learning procedure for multivariate data analysis. This procedure is a tool for finding the most
interesting lower dimensional feature of high dimensional data and optimization with respect to
this projection direction.

The projection pursuit regression method is based on a generalized form of a linear model
as follows.

Yi=58,+ ilﬁmfm(a;Xj)—*_ej, j=1,-,mn, )
where Y; are ¢ dimensional observed response vectors, X; are p dimensional observed
predictor vectors, and { e;} is a noise process. Also, B, and B, are ¢ dimensional unknown

vectors and f,, are unknown functions. For model identification, the following restrictions are

imposed.
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Elf,]=0
Elf]l=1
a;am =1

The model in (1) is a function of projections of X, a,EX ;, instead of predictor variables
X; themselves. Therefore, the number of terms in the right hand side in (1) can be reduced
and simplified. As a result, overfitting problem can be avoided. That is, projection pursuit
regression is to bypass the "curse of dimensionality” caused by the fact that it becomes
difficult to collect enough samples for high-dimensional functions. The projection part of the

term projection pursuit indicates that p-dimensional predictor vector X, is projected onto

direction vectors { a,, ,1<m<M} to get the lengths a,EX,- of the projections, for 1S<m<M,
and the pursuit part indicates that the optimization technique is used to find good direction
vectors, @, , for 1<m<M.

In projection pursuit regression, a universal approximator is used for any continuous

function. In the universal approximator, for any function g(X) and any positive ¢, there
exists number of terms, M, such that [lg(X)—8,— glﬂnfm(a/;X)H { & for every X. See

DeVore (1991) or Cherkassky and Mulier (1998) for details. A function form of f,, in (1) is

not given and the function is predicted in projection pursuit regression, which allows more
flexible results than methods with fixed forms of functions such as neural network. In

prujection pursuit regression, estimate of f,, is given as nonparametric regression or a linear

combination with Hermite functions.
Projection pursuit regression can be compared with neural network with one hidden layer.

Neural network has same model as (1) except a function form of f,. While neural network

uses a fixed function form such as a logistic function and hyperbolic tangent function,
projection pursuit regression uses flexible nonlinear ridge functions such as a nonparametric
function or a linear combination of the Hermite functions. Even though both of neural network
and projection pursuit regression are difficult to interpret, projection pursuit regression is
known to give more flexible and stable result than neural network. (See Donocho and
Johnstone (1989) or Zhao and Atkeson (1992) for details.)

We developed a SAS macro for prediction and classification using projection pursuit
regression. The SAS macro is programmed with SAS/IML and SAS/Macro. The algorithm in
the macro is based on Friedman (1984b), which uses super smoothing technique for function
smoothing. Also, the SAS macro uses Hermite functions as a function smoother, which is
proposed by Hwang et al. (1994). Hwang et al. (1994) fixes number of order in Hermite
functions, but we designed to select number of order automatically using F-test.

We compare super smoothing, smoothing with Hermite functions with fixed order and
automatically selected order. Also, we adapt projection pursuit regression with German credit
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data to show a procedure for classification.
2. Algorithm for projection pursuit regression

2.1 Estimation for prediction in projection pursuit regression

Parameter estimation procedure for projection pursuit regression in this section is based on
Friedman (1984b). We consider continuous response variables first. Assuming that there are g¢
continuous response variables, parameter estimates for prediction in projection pursuit
regression are obtained by minimizing

L= 3 3 (V- 8o— 2 BufulalX)t @
where Y is the i-th element of observation Y, In (2), there are three sets of parameters,
coefficient  parameters of functions {Bim, 1<i<q, 1<m<M}, projection directions

{@m, 1<7<p, 1<m<M}, and unknown functions { fm . 1<=m<M} for a given number of

terms, M. Since it is impossible to estimate all parameters at a time, parameters are estimated
iteratively using backfitting algorithm. The backfitting algorithm in projection pursuit
regression is given as follows.

(growing procedure)

(1) Set % to be 0.
(2) Let the estimate of Sy be Y;, the i-th element of mean vector of Y. and
RV =v,-Y.
(3) k=k+1.
(4) Obtain estimates, By, 7., and a, from the model with one term
R V=Buflai XD+ e, i=1,,q, j=1,-,n

and obtain residuals

—_ —~T
Rz(jk):Ri;(‘k b— z’ik ?k( ap Xj)
(5) Repeat (3) and (4) until £ reaches the maximum number of terms or decrease
of absolute and relative error sum of squares is very small.
(pruning procedure)
(4) For the k-th term, fix other terms and obtain residual
_ ~T
Rz’j(—/e)= Yij_ Y.— Z:k R‘/ ?/( a; Xj)

and obtain the new parameter estimates by fitting model

Ri—n=BaflalX)+ey_p.

For each term, parameter estimates are adjusted iteratively and iteration is repeated
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until convergence.
(5) Delete a term with smallest B, in absolute value and redo (4).

(6) Repeat (4) and (5) until number of terms reaches the designated number.
In parameter estimation in the model with one term, the estimate for one set is obtained by
fixing other two sets. For the m-th term, { B, ,1<i<gq} is estimated with { a;,,1</<p}

and f,, fixed. When @, and f, are fixed, the structure for B,, is linear and estimates of
Bim is given by least squares estimation. And, then, { a,,,1<;<p} is obtained with f,, fixed
and B;, updated for 1<i<gq. For a,, the object function is nonlinear and, therefore, the

estimates are obtained using Gauss-Newton method. Also, with a;, and B,, updated, f, is

obtained through smoothing procedure in Section 2.2. These procedures are repeated until
convergence. In projection pursuit regression, two convergence criteria are used. One is the
convergence criterion of the relative error sum of square and the other is convergence

criterion for the absolute error sum of square. The initial values are given internally.
2.2 Smoothing methods - super smoothing and smoothing with Hermite functions

The super smoothing technique proposed by Friedman (1984a) is generalization of the
running line smoother. The super smoothing technique is performed as follows. For detail of
super smoothing, see Friedman (1984a).

1. Perform the running line smoother with spans 0.02, 0.2 and 05 and obtain the

predicted values and the cross-validated absolute residuals for each data point and

for each span.

2. Perform the running line smoother for the cross-validated absolute residuals with

span 0.2. Then, we have a set of smoothed residuals for each span.

3. Choose the span with minimum of smoothed residuals in Step 2 for each data

point.

4. Perform the running line smoother for the spans chosen in Step 3 with span 0.2.

Then, we obtain a smoothed span for each observation.

5. For the smoothed span for each observation in Step 4, perform interpolation with

predicted values and spans in Step 1.

6. Finally, perform the running line smoother for the predicted values in Step 5 with

span 0.02.
In the super smoothing, the function form is not obtained and only the predicted value for
each observation is generated. It may be uncomfortable, but the super smoother covers more
general forms in the model than other smoothing technique. A defect of super smoothing is
that a closed form of derivative at each data point can not be obtained. In projection pursuit
regression, the derivative at a data point is given as a slope of two nearest data points in the
right hand side and left hand side of each data point.
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Smoothing technique with Hermite functions is proposed by Hwang et al. (1994). The
Hermite polynomials are constructed recursively as follows.
Hy(z)=1,
H\(2) =2z,
H(2)=2(zH, (2)—(r—DH, ,(2)), r=2,3,
The Hermite polynomials are orthogonal on (— o0, o) with respect to the square of the

standard normal density function. That is, for i#j;
[ H(2H(=) () de=0,

where
-22/2

¢<z>=712—ﬂe

Since
fioHZ,(z) ¢ 2)dz= vz VP91

we can construct the orthogonal Hermite function
h(z)= () Viglho=U=Dlg (2 4(2),

so that
- _ _[ 1 for i=j
[ m@ntzaa={ { i
Then, usually the smoothing function based on the Hermite polynomial of order R is defined
as

A= 3 cfa).

The coefficients c¢, is estimated by the least squares method.

Hwang et al. (1994) uses the same order R in all functions. But, the high order of these
functions may not contribute to a specific term. Also, in projection pursuit regression, same
order for all terms is not effective. That is, using high order has high risk of overfitting.

To avoid this problem, the order in Hermite functions needs to be adjusted for each term.
In the macro we designed, order of Hermite function can be determined using backward
elimination with F-test. The coefficient ¢, is estimated for maximum number of order and

the most insignificant estimate is eliminated until all estimates are significant.

Smoothing with the Hermite functions gives a parametric model and provides smooth
interpolation. Also, an accurate derivative is obtained in a smoothing function with the
Hermite functions. And the smoothing with the Hermite functions tends to be smoother than
super smoothing. Also, the smoothing with the Hermite functions is faster and need less
memory space.
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2.3 Classification in projection pursuit regression

Suppose that the response variable has ¢ possible categories, c¢j,",c,. Then, for a

observed response Y, dummy variables are given as follows.

H; =1 if Y belongs to category c;
=( otherwise.

For classification projection pursuit regression, dummy variables H,,-:,H, are used as

response variables. Estimates may be obtained in order to minimize the expected loss of
misclassification, but this approach produces a non-convex object function in parameter
estimation and it is not desirable in practice. See Breiman, Friedman, Olshen and Stone
(1983) for details. Instead, classification with projection pursuit regression produces estimates
by minimizing

2 2(}[;}_51{)_ ﬁ: Bimfm(arEXj))z

=1 =1 m=1
where Hj; are the dummy variables described above for the j-th observation Y,

Then the decision rule is to classify an observation into the category where
Byt glﬂmfm(a;)o

is maximized over 7.
3. SIMULATION AND COMPARISON

We developed a SAS macro for prediction and classification using projection pursuit
regression. The SAS macro is programmed with SAS/IML and SAS/Macro. The algorithm is
based on Friedman (1984b), which uses super smoothing technique for function smoothing.
Also the SAS macro uses the Hermite functions as a function smoother, which is proposed by
Hwang et al. (1994). In addition to their algorithm, using backward elimination we add
automatic order selection in Hermite functions with maximum order given. Also, the SAS
macro provides several selection criteria for term selection to help users choose number of
terms in model (1).

We compare three smoothing methods in projection pursuit regression - super smoothing
proposed by Friedman (1984b), smoothing with Hermite functions with order 7 proposed by
Hwang et al. (1994) and smoothing with Hermite functions with automatic order selection.
These comparisons are made on the learning accuracy that is the fraction of wvariance
unexplained (FVU) of independent test data. Also, we show an example of classification with
German credit data.

3.1 Simulation study with nonlinear regression functions
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Figure 1. (a) simple function, (b) radial function, (¢) harmonic function,

{d) additive function, (e) complicated function.

We investigate performance in five nonlinear functions used in Hwang et al. (1994). These
functions are as follows.
(1) Simple function
Axy, %) =10.391((x, —0.4) x (x,—0.6) +0.36)
(2) Radial function
Axy, x2) = 24.234(4(0.75— 7)), 7= (x;—0.5)%+ (2, —0.5)*
(3) Harmonic function
Aoy, x0) =42.659(0.1+x1(0.05+ x}' —10 x}° - x3°+5 x3)
with x;7=x,—0.5, x3=x,—0.5

(4) Additive function
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Ay, %) = 1.3356(1.5(1 — x1) + ¢ 'sin3x(x; —0.6)%)
+¢* 7" sinWa(x,—0.9)9)

(5) Complicated function
Axy, %) =1.9(1.35+ ¢ ™sin(13(x;— 0.6)*) x e "sin(Tx,))

Shapes of these functions are illustrated in Figure 1.
We generate independent two data sets for each of five functions. The first data set, called

training data set, is for model fitting. Two independent predictor variables ( xy;,%;;) that are

generated from the uniform distribution U([O,l]z) and the response variable y; is generated
with a noise as follows.

v;= Rxyj, x95) +0.25¢;.
Here &; ~ N(0,1). 225 observations are generated for model fitting.

The second data set, called test data set, is for performance assessment by comparing the
fitted values with the true value. The test data set is generated on an equally spaced grid on
[0,1]1% and the size of test data set is 10000, ie. with

=AU for =110, i=1,2,
The training data sets were generated 50 times. For each training set, the model was fitted
and assessed with the test data set. The same test data set was used for 50 training data
set. '

We assess each algorithm with 3 and 5 terms. For the models with 3 terms, we increase
the number of terms up to 5, and then, decrease the number of terms to 3. We set 7 to be
the maximum number of terms for the model with 5 terms. We use the fraction of variance
unexplained (FVU) of independent test data for evaluation. FVU is obtained by residual sum
of squares divided by corrected sum of squares of the response variables. Means and standard
deviations for FVU’s for 50 independent training data are given in Table 1.

As shown in Table 1, for the simple function and the additive function, 3 terms provides
less FVU in each smoothing method and 5 terms are appropriate for the radial function,
harmonic function and complicate function. In comparison of smoothing methods, smoothing
with the Hermite functions with order of 7 is better in cases of the simple function, the radial
function and the harmonic functions. Super smoothing provides smaller FVU in the additive
function and smoothing with the Hermite functions with internal selection of order has smaller
FVU for the complicate function. This shows that fixed order in the Hermite function provides
better result in relatively simple form of functions. And super smoothing is appropriate for
corrugated form of functions. If a function form is complicate, internal selection of the order
of the Hermite function looks reasonable.

3.2 Classification in German credit data
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3 terms 5 terms
FVU(S.D) FVU(S.D)
Hermite function
(Order=7) 0.012 (0.009) | 0.019 (0.028)
simple function super smoothing 0.152 (0.988) | 0.023 (0.039)

Hermite function
(automatic order)

0.019 (0.018)

0.056 (0.071)

Hermite function

0.029 (0.016)

0.018 (0.029)

(Order=7)
radial function super smoothing 0.040 (0.015) | 0.024 (0.008)
(rtomatic oedon, | 0027 (0.094) | 0,038 (0.094)
Hermite function
(Order=7) 0.106 (0.031) | 0.019 (0.009)
hfirr;nclgg;c super smoothing 0.258 (0.073) | 0.191 (0.063)

Hermite function
(automatic order)

0.127 (0.051)

0.037 (0.028)

additive function

Hermite function
(Order=7)

0.025 (0.016)

0.033 (0.026)

super smoothing

0.018 (0.030)

0.022 (0.020)

Hermite function
(automatic order)

0.028 (0.021)

0.045 (0.057)

complicate
function

Hermite function

(Order=7) 0.121 (0.064) | 0.058 (0.027)
super smoothing 0.120 (0.064) | 0.063 (0.022)
Hermite function 0.106 (0.055) | 0.030 (0.014)

(automatic order)

Table 1. The average FVU of the test data set

593

We investigate performance of smoothing methods for German credit data, which was used
in StatLog project. German credit data, provided by Professor Dr. Hans Hofmann at
University Hamburg, contain 1000 observations and 13 attributes with some categorical
attributes.

We added several indicator variables for categorical attributes. This preprocessed data set
had 51 numerical attributes, for predictor, and a categorical attribute for response variable with
2 possible categories. The response variable of German credit data is to show that credit is
good or bad for each customer. And we call a concerned category of the response variable as
a target class. "Bad” category is a target class in German credit data. We use 10-fold
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Figure 2. Average misclassification error rate for 10-fold cross-validation

cross—validation for term selection and performance measure. 10-fold cross—validation was
used as follows.

1. Randomly divide data into 10 disjoint sets with roughly equal size, Z, 25, ", Z.
2. For each data set Z; of size #u;,,

(a) Use the remaining data sets, Z;,= L_JZ,- for model estimation.
171

(b) Apply the estimated model from (a) to data set Z; and obtain
misclassification error rate (MER), the ratio of misclassified observations in Z;

3. Compute an average and a standard deviation of 10 MER’s and use the average
as a measure of performance.

4. With a new observation, apply the new observation to 10 estimated models in 2
and classify the observation to the class of which more models are in favor of.

For classification, we need to decide number of terms in model (1). For choice of number of
terms, we apply 10-fold cross validation for the model with number of terms varying 1 to 20.
Figure 2 shows average of MER’s for data sets of model estimation (train data set) and a
data set not in model estimation and used for model performance (test data set). The average
of MER's for test data sets is more reasonable for model selection because the test data set
is irrelevant to model estimation. In Figure 2, model with 8 terms gives the smallest average
of MER's for test data sets and, therefore, we chooses 8 to be the number of terms.
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super Hermite Hermite
LDA Smoolzhi function with | function with
ng order=7 automatic order
Average of MER 0.348 0.302 0.284 0.241
S.D of MER 0.100 0.038 0.046 0.044

Table 2. The average misclassification error rate

We compare four classification methods - linear discriminant analysis (ILDA), classification
with projection pursuit regression with super smoothing and classification with projection
pursuit regression with the Hermite functions with order equal to 7 and with automatic order
selection. Table 2 shows that classification with projection pursuit regression with the Hermite
functions with automatic order overperforms other methods. Also, classification with projection
pursuit regression with super smoothing is more stable because the standard deviation 1s
smaller than others.

4. Concluding remarks

As a tool for high dimensional data analysis, we examined algorithms for projection pursuit
regression and developed a macro program for prediction and classification using projection
pursuit regression in SAS. In the macro, the order of the Hermite function can be adjusted
automatically with F-test. Also, we evaluated the performance for prediction and classification.
For learning speed, the macro with super smoothing takes a lot of time. But, the macro with
the Hermite function takes much less time, Smoothing with the Hermite function with order
of 7 looks better in relatively simpler form of functions and smoothing with the Hermite
functions with automatic order selection outperforms in a complicate form of functions.
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